We present a droplet-based microfluidic system for performing bioassays requiring controlled analyte encapsulation by employing highly flexible on-demand droplet generation. On-demand droplet generation and encapsulation are achieved pneumatically using a microdispensing pump connected to a constant pressure source. The system generates single droplets to the collection route only when the pump is actuated with a designated pressure level and produces two-phase parallel flow to the waste route during the stand-by state. We analyzed the effect of actuation pressure on the stability and size of droplets and optimized conditions for generation of stable droplets over a wide pressure range. By increasing the duration of pump actuation, we could either trigger a short train of identical size droplets or generate a single larger droplet. We also investigated the methodology to control droplet contents by fine-tuning flow rates or implementing a resistance bridge between the pump and main channels. We demonstrated the integrated chip for on-demand mixing between two aqueous phases in droplets and on-demand encapsulation of Escherichia coli cells. Our unique on-demand feature for selective encapsulation is particularly appropriate for bioassays with extremely dilute samples, such as pathogens in a clinical sample, since it can significantly reduce the number of empty droplets that impede droplet collection and subsequent data analysis.

1.
S. Y.
Teh
,
R.
Lin
,
L. H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
(
2
),
198
220
(
2008
).
2.
A.
Huebner
,
S.
Sharma
,
M.
Srisa-Art
,
F.
Hollfelder
,
J. B.
Edel
, and
A. J.
Demello
, “
Microdroplets: A sea of applications?
Lab Chip
8
(
8
),
1244
1254
(
2008
).
3.
R. R.
Pompano
,
W.
Liu
,
W.
Du
, and
R. F.
Ismagilov
, “
Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions
,”
Annu. Rev. Anal. Chem.
4
,
59
81
(
2011
).
4.
M.
Rhee
and
M. A.
Burns
, “
Drop mixing in a microchannel for lab-on-a-chip platforms
,”
Langmuir
24
(
2
),
590
601
(
2008
).
5.
M. T.
Guo
,
A.
Rotem
,
J. A.
Heyman
, and
D. A.
Weitz
, “
Droplet microfluidics for high-throughput biological assays
,”
Lab Chip
12
(
12
),
2146
2155
(
2012
).
6.
M. G.
Simon
,
R.
Lin
,
J. S.
Fisher
, and
A. P.
Lee
, “
A Laplace pressure based microfluidic trap for passive droplet trapping and controlled release
,”
Biomicrofluidics
6
(
1
),
014110
(
2012
).
7.
E.
Brouzes
,
M.
Medkova
,
N.
Savenelli
,
D.
Marran
,
M.
Twardowski
,
J. B.
Hutchison
,
J. M.
Rothberg
,
D. R.
Link
,
N.
Perrimon
, and
M. L.
Samuels
, “
Droplet microfluidic technology for single-cell high-throughput screening
,”
Proc. Natl. Acad. Sci. U.S.A.
106
(
34
),
14195
14200
(
2009
).
8.
W.
Li
,
H. H.
Pham
,
Z.
Nie
,
B.
MacDonald
,
A.
Guenther
, and
E.
Kumacheva
, “
Multi-step microfluidic polymerization reactions conducted in droplets: the internal trigger approach
,”
J. Am. Chem. Soc.
130
(
30
),
9935
9941
(
2008
).
9.
D. J.
Eastburn
,
A.
Sciambi
, and
A. R.
Abate
, “
Picoinjection enables digital detection of RNA with droplet RT-PCR
,”
PLoS One
8
(
4
),
e62961
(
2013
).
10.
B.
Zheng
,
J. D.
Tice
, and
R. F.
Ismagilov
, “
Formation of arrayed droplets of soft lithography and two-phase fluid flow, and application in protein crystallization
,”
Adv. Mater.
16
(
15
),
1365
1368
(
2004
).
11.
I.
Shestopalov
,
J. D.
Tice
, and
R. F.
Ismagilov
, “
Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system
,”
Lab Chip
4
(
4
),
316
321
(
2004
).
12.
C.
Chang
,
J.
Sustarich
,
R.
Bharadwaj
,
A.
Chandrasekaran
,
P. D.
Adams
, and
A. K.
Singh
, “
Droplet-based microfluidic platform for heterogeneous enzymatic assays
,”
Lab Chip
13
(
9
),
1817
1822
(
2013
).
13.
T.
Thorsen
,
R. W.
Roberts
,
F. H.
Arnold
, and
S. R.
Quake
, “
Dynamic pattern formation in a vesicle-generating microfluidic device
,”
Phys. Rev. Lett.
86
(
18
),
4163
4166
(
2001
).
14.
T. D.
Perroud
,
R. J.
Meagher
,
M. P.
Kanouff
,
R. F.
Renzi
,
M.
Wu
,
A. K.
Singh
, and
K. D.
Patel
, “
Isotropically etched radial micropore for cell concentration, immobilization, and picodroplet generation
,”
Lab Chip
9
(
4
),
507
515
(
2009
).
15.
S. L.
Anna
,
N.
Bontoux
, and
H. A.
Stone
, “
Formation of dispersions using ‘flow focusing’ in microchannels
,”
Appl. Phys. Lett.
82
(
3
),
364
366
(
2003
).
16.
P.
Guillot
,
A.
Colin
,
A. S.
Utada
, and
A.
Ajdari
, “
Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers
,”
Phys. Rev. Lett.
99
(
10
),
104502
(
2007
).
17.
A.
Gunther
and
K. F.
Jensen
, “
Multiphase microfluidics: From flow characteristics to chemical and materials synthesis
,”
Lab Chip
6
(
12
),
1487
1503
(
2006
).
18.
C. N.
Baroud
,
F.
Gallaire
, and
R.
Dangla
, “
Dynamics of microfluidic droplets
,”
Lab Chip
10
(
16
),
2032
2045
(
2010
).
19.
R.
Seemann
,
M.
Brinkmann
,
T.
Pfohl
, and
S.
Herminghaus
, “
Droplet based microfluidics
,”
Rep. Prog. Phys.
75
(
1
),
016601
(
2012
).
20.
E.
Fradet
,
C.
McDougall
,
P.
Abbyad
,
R.
Dangla
,
D.
McGloin
, and
C. N.
Baroud
, “
Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays
,”
Lab Chip
11
(
24
),
4228
4234
(
2011
).
21.
S. J.
Zeng
,
B. W.
Li
,
X. O.
Su
,
J. H.
Qin
, and
B. C.
Lin
, “
Microvalve-actuated precise control of individual droplets in microfluidic devices
,”
Lab Chip
9
(
10
),
1340
1343
(
2009
).
22.
H.
Zec
,
T. D.
Rane
, and
T. H.
Wang
, “
Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets
,”
Lab Chip
12
(
17
),
3055
3062
(
2012
).
23.
R. M.
Lorenz
,
J. S.
Edgar
,
G. D. M.
Jeffries
, and
D. T.
Chiu
, “
Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets
,”
Anal. Chem.
78
(
18
),
6433
6439
(
2006
).
24.
J.
Xu
and
D.
Attinger
, “
Drop on demand in a microfluidic chip
,”
J. Micromech. Microeng.
18
(
6
),
065020
(
2008
).
25.
G. M.
Whitesides
,
E.
Ostuni
,
S.
Takayama
,
X. Y.
Jiang
, and
D. E.
Ingber
, “
Soft lithography in biology and biochemistry
,”
Annu. Rev. Biomed. Eng.
3
,
335
373
(
2001
).
26.
L.
Mazutis
and
A. D.
Griffiths
, “
Selective droplet coalescence using microfluidic systems
,”
Lab Chip
12
(
10
),
1800
1806
(
2012
).
27.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up
,”
Lab Chip
6
(
3
),
437
446
(
2006
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.4874715 for more detailed image sequences of multiple droplet generation and for strategies to prevent the pumping fluid from entering on-demand generated droplets.

Supplementary Material

You do not currently have access to this content.