A spiral inertial filtration (SIFT) device that is capable of high-throughput (1 ml/min), high-purity particle separation while concentrating recovered target particles by more than an order of magnitude is reported. This device is able to remove large fractions of sample fluid from a microchannel without disruption of concentrated particle streams by taking advantage of particle focusing in inertial spiral microfluidics, which is achieved by balancing inertial lift forces and Dean drag forces. To enable the calculation of channel geometries in the SIFT microsystem for specific concentration factors, an equivalent circuit model was developed and experimentally validated. Large particle concentration factors were then achieved by maintaining either the average fluid velocity or the Dean number throughout the entire length of the channel during the incremental removal of sample fluid. The SIFT device was able to separate MCF7 cells spiked into whole blood from the non-target white blood cells (WBC) with a recovery of nearly 100% while removing 93% of the sample volume, which resulted in a concentration enhancement of the MCF7 cancer cells by a factor of 14.

1.
J. D.
Adams
,
U.
Kim
, and
H. T.
Soh
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
18165
(
2008
).
2.
S.
Choi
,
J. M.
Karp
, and
R.
Karnik
,
Lab Chip
12
,
1427
(
2012
).
3.
I.
Doh
and
Y.
Cho
,
Sens. Actuators, A
121
,
59
(
2005
).
4.
K.-H.
Han
and
A. B.
Frazier
,
Lab Chip
8
,
1079
(
2008
).
5.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
,
Science
304
,
987
(
2004
).
6.
W.
Mao
and
A.
Alexeev
,
Phys. Fluids
23
,
051704
(
2011
).
7.
H.-S.
Moon
,
K.
Kwon
,
S.-I.
Kim
,
H.
Han
,
J.
Sohn
,
S.
Lee
, and
H.-I.
Jung
,
Lab Chip
11
,
1118
(
2011
).
8.
F.
Petersson
,
L.
Aberg
,
A.-M.
Swärd-Nilsson
, and
T.
Laurell
,
Anal. Chem.
79
,
5117
(
2007
).
9.
J.
Takagi
,
M.
Yamada
,
M.
Yasuda
, and
M.
Seki
,
Lab Chip
5
,
778
(
2005
).
10.
M.
Yamada
and
M.
Seki
,
Anal. Chem.
78
,
1357
(
2006
).
11.
A. J.
Mach
and
D.
Di Carlo
,
Biotechnol. Bioeng.
107
,
302
(
2010
).
12.
X.
Cheng
,
D.
Irimia
,
M.
Dixon
,
K.
Sekine
,
U.
Demirci
,
L.
Zamir
,
R. G.
Tompkins
,
W.
Rodriguez
, and
M.
Toner
,
Lab Chip
7
,
170
(
2007
).
13.
S. C.
Hur
,
A. J.
Mach
, and
D.
Di Carlo
,
Biomicrofluidics
5
,
022206
(
2011
).
14.
S. L.
Stott
,
C.-H.
Hsu
,
D. I.
Tsukrov
,
M.
Yu
,
D. T.
Miyamoto
,
B.
A. Waltman
,
S. M.
Rothenberg
,
A. M.
Shah
,
M. E.
Smas
,
G. K.
Korir
,
F. P.
Floyd
,
A. J.
Gilman
,
J. B.
Lord
,
D.
Winokur
,
S.
Springer
,
D.
Irimia
,
S.
Nagrath
,
L. V.
Sequist
,
R. J.
Lee
,
K. J.
Isselbacher
,
S.
Maheswaran
,
D.
A. Haber
, and
M.
Toner
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
18392
(
2010
).
16.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
,
Microfluid. Nanofluid.
7
,
217
(
2009
).
17.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
,
Phys. Fluids
20
,
101702
(
2008
).
18.
G.
Segré
and
A.
Silberberg
,
Nature
189
,
209
(
1961
).
19.
A. A. S.
Bhagat
,
H. W.
Hou
,
L. D.
Li
,
C. T.
Lim
, and
J.
Han
,
Lab Chip
11
,
1870
(
2011
).
20.
S. C.
Hur
,
H. T. K.
Tse
, and
D.
Di Carlo
,
Lab Chip
10
,
274
(
2010
).
21.
M. G.
Lee
,
S.
Choi
, and
J.-K.
Park
,
J. Chromatogr. A
1218
,
4138
(
2011
).
22.
M. G.
Lee
,
S.
Choi
,
H.-J.
Kim
,
H. K.
Lim
,
J.-H.
Kim
,
N.
Huh
, and
J.-K.
Park
,
Appl. Phys. Lett.
98
,
253702
(
2011
).
23.
A. J.
Mach
,
J. H.
Kim
,
A.
Arshi
,
S. C.
Hur
, and
D.
Di Carlo
,
Lab Chip
11
,
2827
(
2011
).
24.
J.-S.
Park
,
S.-H.
Song
, and
H.-I.
Jung
,
Lab Chip
9
,
939
(
2009
).
25.
H.
A. Nieuwstadt
,
R.
Seda
,
D. S.
Li
,
J. B.
Fowlkes
, and
J. L.
Bull
,
Biomed. Microdevices
13
,
97
(
2011
).
26.
T.
Tanaka
,
T.
Ishikawa
,
K.
Numayama-Tsuruta
,
Y.
Imai
,
H.
Ueno
,
T.
Yoshimoto
,
N.
Matsuki
, and
T.
Yamaguchi
,
Biomed. Microdevices
14
,
25
(
2012
).
27.
Z.
Wu
,
B.
Willing
,
J.
Bjerketorp
,
J. K.
Jansson
, and
K.
Hjort
,
Lab Chip
9
,
1193
(
2009
).
28.
29.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
,
Lab Chip
8
,
1906
(
2008
).
30.
C.
Blattert
,
R.
Jurischka
,
I.
Tahhan
,
A.
Schoth
,
P.
Kerth
, and
W.
Menz
, in
26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(IEEE,
2004
), Vol.
4
, p.
2627
.
31.
B. H.
Kwon
,
H. H.
Kim
,
J.
Cha
,
C. H.
Ahn
,
T.
Arakawa
,
S.
Shoji
, and
J. S.
Go
,
Jpn. J. Appl. Phys., Part 1
50
,
097301
(
2011
).
32.
S.
Ookawara
,
D.
Street
, and
K.
Ogawa
,
Chem. Eng. Sci.
61
,
3714
(
2006
).
33.
N.
Oozeki
,
S.
Ookawara
,
K.
Ogawa
,
P.
Löb
, and
V.
Hessel
,
AIChE J.
55
,
24
(
2009
).
34.
E.
Sollier
,
H.
Rostaing
,
P.
Pouteau
,
Y.
Fouillet
, and
J.-L.
Achard
,
Sens. Actuators B
141
,
617
(
2009
).
35.
D. H.
Yoon
,
J. B.
Ha
,
Y. K.
Bahk
,
T.
Arakawa
,
S.
Shoji
, and
J. S.
Go
,
Lab Chip
9
,
87
(
2009
).
36.
D.
Di Carlo
,
J. F.
Edd
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
,
Anal. Chem.
80
,
2204
(
2008
).
37.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18892
(
2007
).
38.
J.
Oakey
,
R. W.
Applegate
,
E.
Arellano
,
D.
Di Carlo
,
S. W.
Graves
, and
M.
Toner
,
Anal. Chem.
82
,
3862
(
2010
).
39.
I.
Gregoratto
,
C. J.
McNeil
, and
M. W.
Reeks
,
Proc. SPIE
6465
,
646503
(
2007
).
40.
S. S.
Kuntaegowdanahalli
,
A. A. S.
Bhagat
,
G.
Kumar
, and
I.
Papautsky
,
Lab Chip
9
,
2973
(
2009
).
41.
W. C.
Lee
,
A. A. S.
Bhagat
,
S.
Huang
,
K. J.
Van Vliet
,
J.
Han
, and
C. T.
Lim
,
Lab Chip
11
,
1359
(
2011
).
42.
J. M.
Martel
and
M.
Toner
,
Phys. Fluids
24
,
032001
(
2012
).
43.
J.
Seo
,
M. H.
Lean
, and
A.
Kole
,
Appl. Phys. Lett.
91
,
033901
(
2007
).
44.
J.
Seo
,
M. H.
Lean
, and
A.
Kole
,
J. Chromatogr. A
1162
,
126
(
2007
).
45.
A.
Russom
,
A. K.
Gupta
,
S.
Nagrath
,
D.
Di Carlo
,
J. F.
Edd
, and
M.
Toner
,
New J. Phys.
11
,
75025
(
2009
).
46.
J.
Wang
,
Y.
Zhan
,
V. M.
Ugaz
, and
C.
Lu
,
Lab Chip
10
,
2057
(
2010
).
47.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
,
N.
Kaval
,
C. J.
Seliskar
, and
I.
Papautsky
,
Biomed. Microdevices
12
,
187
(
2010
).
48.
A. P.
Sudarsan
and
V. M.
Ugaz
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
7228
(
2006
).
49.
S.
Berger
,
Annu. Rev. Fluid Mech.
15
,
461
(
1983
).
50.
S.
Ookawara
,
R.
Higashi
,
D.
Street
, and
K.
Ogawa
,
Chem. Eng. J.
101
,
171
(
2004
).
51.
D. R.
Gossett
and
D.
Di Carlo
,
Anal. Chem.
81
,
8459
(
2009
).
52.
N.
Xiang
,
H.
Yi
,
K.
Chen
,
D.
Sun
,
D.
Jiang
,
Q.
Dai
, and
Z.
Ni
,
Biomicrofluidics
7
,
044116
(
2013
).
53.
N.
Nivedita
and
I.
Papautsky
,
Biomicrofluidics
7
,
054101
(
2013
).
54.
L.
Wu
,
G.
Guan
,
H. W.
Hou
,
A. A. S.
Bhagat
, and
J.
Han
,
Anal. Chem.
84
,
9324
(
2012
).
55.
J.
Sun
,
M.
Li
,
C.
Liu
,
Y.
Zhang
,
D.
Liu
,
W.
Liu
,
G.
Hu
, and
X.
Jiang
,
Lab Chip
12
,
3952
(
2012
).
56.
H. W.
Hou
,
M. E.
Warkiani
,
B. L.
Khoo
,
Z. R.
Li
,
R.
a. Soo
,
D. S.-W.
Tan
,
W.-T.
Lim
,
J.
Han
,
A. A. S.
Bhagat
, and
C. T.
Lim
,
Sci. Rep.
3
,
1259
(
2013
).
57.
S.
Yang
,
A.
Undar
, and
J. D.
Zahn
,
Lab Chip
6
,
871
(
2006
).
58.
S.
Yang
,
A.
Undar
, and
J. D.
Zahn
,
ASAIO J.
51
,
585
(
2005
).
59.
R. D.
Jäggi
,
R.
Sandoz
, and
C. S.
Effenhauser
,
Microfluid. Nanofluid.
3
,
47
(
2007
).
60.
S. S.
Shevkoplyas
,
T.
Yoshida
,
L. L.
Munn
, and
M. W.
Bitensky
,
Anal. Chem.
77
,
933
(
2005
).
61.
X.
Xue
,
M. K.
Patel
,
M.
Kersaudy-Kerhoas
,
C.
Bailey
, and
M. P. Y.
Desmulliez
,
Comput. Methods Biomech. Biomed. Eng.
14
,
549
(
2011
).
62.
E.
Sollier
,
M.
Cubizolles
,
Y.
Fouillet
, and
J.-L.
Achard
,
Biomed. Microdevices
12
,
485
(
2010
).
63.
Z.
Geng
,
Z.
Xu
,
W.
Wang
,
W.
Su
, and
Z.
Li
, in
10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)
(IEEE,
2010
), p.
1474
.
64.
Y.
Ju
,
Z.
Geng
,
L.
Zhang
,
W.
Wang
, and
Z.
Li
, in
2011 16th International Solid State Sensors, Acutators and Microsystems Conference
(IEEE,
2011
), p.
298
.
65.
H.
Maruyama
,
S.
Sakuma
,
Y.
Yamanishi
, and
F.
Arai
, in
IEEE/SICE International Symposium on System Integration
(IEEE,
2009
), p.
7
.
66.
T.
Tanaka
,
T.
Ishikawa
,
K.
Numayama-Tsuruta
, and
Y.
Imai
,
Lab Chip
12
,
4336
(
2012
).
67.
H.-C.
Tseng
,
R.
Wu
,
H.-Y.
Chang
, and
F.-G.
Tseng
, in
IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)
(IEEE,
2012
), p.
835
.
68.
K. W.
Oh
,
K.
Lee
,
B.
Ahn
, and
E. P.
Furlani
,
Lab Chip
12
,
515
(
2012
).
69.
See supplementary material at http://dx.doi.org/10.1063/1.4870399 for an analysis of fluid removed as a function of De and Re, clarifications on the approximations with respect to Eq. (8), derivation of the channel width correction after fluid removal, and experimental results of separation and concentration of multiple sizes of fluorescent beads.
70.
R. J.
Cornish
,
Proc. R. Soc. London, Ser. A
120
,
691
(
1928
).
71.
T.
Gervais
,
J.
El-Ali
,
A.
Günther
, and
K. F.
Jensen
,
Lab Chip
6
,
500
(
2006
).
72.
B. S.
Hardy
,
K.
Uechi
,
J.
Zhen
, and
H.
Pirouz Kavehpour
,
Lab Chip
9
,
935
(
2009
).
73.
J.
Sun
,
C.
Liu
,
M.
Li
,
J.
Wang
,
Y.
Xianyu
,
G.
Hu
, and
X.
Jiang
,
Biomicrofluidics
7
,
11802
(
2013
).
74.
M. E.
Warkiani
,
G.
Guan
,
K. B.
Luan
,
W. C.
Lee
,
A. A. S.
Bhagat
,
P. K.
Chaudhuri
,
D. S.-W.
Tan
,
W. T.
Lim
,
S. C.
Lee
,
P. C. Y.
Chen
,
C. T.
Lim
, and
J.
Han
,
Lab Chip
14
,
128
(
2014
).

Supplementary Material

You do not currently have access to this content.