Alternating-current (AC) electrokinetics involve the movement and behaviors of particles or cells. Many applications, including dielectrophoretic manipulations, are dependent upon charge interactions between the cell or particle and the surrounding medium. Medium concentrations are traditionally treated as spatially uniform in both theoretical models and experiments. Human red blood cells (RBCs) are observed to crenate, or shrink due to changing osmotic pressure, over 10 min experiments in non-uniform AC electric fields. Cell crenation magnitude is examined as functions of frequency from 250 kHz to 1 MHz and potential from 10 Vpp to 17.5 Vpp over a 100 μm perpendicular electrode gap. Experimental results show higher peak to peak potential and lower frequency lead to greater cell volume crenation up to a maximum volume loss of 20%. A series of experiments are conducted to elucidate the physical mechanisms behind the red blood cell crenation. Non-uniform and uniform electrode systems as well as high and low ion concentration experiments are compared and illustrate that AC electroporation, system temperature, rapid temperature changes, medium pH, electrode reactions, and convection do not account for the crenation behaviors observed. AC electroosmotic was found to be negligible at these conditions and AC electrothermal fluid flows were found to reduce RBC crenation behaviors. These cell deformations were attributed to medium hypertonicity induced by ion concentration gradients in the spatially nonuniform AC electric fields.

1.
S. K.
Arya
,
K. C.
Lee
,
D.
Bin Dah'alan
,
Daniel
, and
A. R. A.
Rahman
, “
Breast tumor cell detection at single cell resolution using an electrochemical impedance technique
,”
Lab Chip
12
,
2362
2368
(
2012
).
2.
B. H.
Lapizco-Encinas
,
B. A.
Simmons
,
E. B.
Cummings
, and
Y.
Fintschenko
, “
Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators
,”
Anal. Chem.
76
,
1571
1579
(
2004
).
3.
G.
Medoro
,
N.
Manaresi
,
A.
Leonardi
,
L.
Altomare
,
M.
Tartagni
, and
R.
Guerrieri
, “
A lab-on-a-chip for cell detection and manipulation
,”
IEEE Sens. J.
3
,
317
325
(
2003
).
4.
S.
Fiedler
,
S. G.
Shirley
,
T.
Schnelle
, and
G.
Fuhr
, “
Dielectrophoretic sorting of particles and cells in a microsystem
,”
Anal. Chem.
70
,
1909
1915
(
1998
).
5.
P. R. C.
Gascoyne
,
X. B.
Wang
,
Y.
Huang
, and
F. F.
Becker
, “
Dielectrophoretic separation of cancer cells from blood
,”
IEEE Trans. Ind. Appl.
33
,
670
678
(
1997
).
6.
A. R.
Minerick
, “
The rapidly growing field of micro and nanotechnology to measure living cells
,”
AIChE J.
54
,
2230
2237
(
2008
).
7.
A. R.
Minerick
,
R. H.
Zhou
,
P.
Takhistov
, and
H. C.
Chang
, “
Manipulation and characterization of red blood cells with alternating current fields in microdevices
,”
Electrophoresis
24
,
3703
3717
(
2003
).
8.
K. M.
Leonard
and
A. R.
Minerick
, “
Explorations of ABO-Rh antigen expressions on erythrocyte dielectrophoresis: Changes in cross-over frequency
,”
Electrophoresis
32
,
2512
2522
(
2011
).
9.
S. K.
Srivastava
,
A.
Artemiou
, and
A. R.
Minerick
, “
Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing
,”
Electrophoresis
32
,
2530
2540
(
2011
).
10.
G.
Gulati
,
Blood Cell Morphology Grading Guide
(
American Society for Clinical Pathology (ASCP) Publishing Team
,
2009
).
11.
M.
Rasia
and
A.
Bollini
, “
Red blood cell shape as a function of medium's ionic strength and pH
,”
Biochim. Biophys. Acta, Biomembr.
1372
,
198
204
(
1998
).
12.
T. M.
Fischer
, “
Shape memory of human red blood cells
,”
Biophys. J.
86
,
3304
3313
(
2004
).
13.
M. M.
Gedde
,
E. Y.
Yang
, and
W. H.
Huestis
, “
Shape response of human erythrocytes to altered cell pH
,”
Blood
86
,
1595
1599
(
1995
).
14.
K.
Kinosita
and
T. Y.
Tsong
, “
Formation and resealing of pores of controlled sizes in human erythrocyte-membrane
,”
Nature
268
,
438
441
(
1977
).
15.
T. Y.
Tsong
and
E.
Kingsley
, “
Hemolysis of human erythrocyte induced by a rapid temperature jump
,”
J. Biol. Chem.
250
,
786
789
(
1975
).
16.
S.
Movahed
and
D. Q.
Li
, “
Microfluidics cell electroporation
,”
Microfluid. Nanofluid.
10
,
703
734
(
2011
).
17.
P.
Garcia-Sanchez
,
A.
Ramos
,
A.
Gonzalez
,
N. G.
Green
, and
H.
Morgan
, “
Flow reversal in traveling-wave electrokinetics: An analysis of forces due to ionic concentration gradients
,”
Langmuir
25
,
4988
4997
(
2009
).
18.
M. L.
Turgeon
,
Clinical Hematology: Theory and Procedures
(
Lippincott Williams & Wilkins
,
2004
), p.
100
.
19.
T. N. G.
Adams
,
K. M.
Leonard
, and
A. R.
Minerick
, “
Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells
,”
Biomicrofluidics
7
,
064114
(
2013
).
20.
K. A.
DeBruin
and
W.
Krassowska
, “
Modeling electroporation in a single cell. I. Effects of field strength and rest potential
,”
Biophys. J.
77
,
1213
1224
(
1999
).
21.
D. C.
Chang
and
T. S.
Reese
, “
Changes in membrane-structure induced by electroporation as revealed by rapid-freezing electron-microscopy
,”
Biophys. J.
58
,
1
12
(
1990
).
22.
N.
Bao
,
T. T.
Le
,
J. X.
Cheng
, and
C.
Lu
, “
Microfluidic electroporation of tumor and blood cells: Observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells
,”
Integr. Biol.
2
,
113
120
(
2010
).
23.
V. V.
Moroz
,
A. M.
Chernysh
,
E. K.
Kozlova
,
P. Y.
Borshegovskaya
,
U. A.
Bliznjuk
,
R. M.
Rysaeva
, and
O. Y.
Gudkova
, “
Comparison of red blood cell membrane microstructure after different physicochemical influences: Atomic force microscope research
,”
J. Crit. Care
25
,
539
e1
(
2010
).
24.
A. O.
Bilska
,
K. A.
DeBruin
, and
W.
Krassowska
, “
Theoretical modeling of the effects of shock duration, frequency, and strength on the degree of electroporation
,”
Bioelectrochemistry
51
,
133
143
(
2000
).
25.
C. S.
Djuzenova
,
U.
Zimmermann
,
H.
Frank
,
V. L.
Sukhorukov
,
E.
Richter
, and
G.
Fuhr
, “
Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells
,”
Biochim. Biophys. Acta, Biomembr.
1284
,
143
152
(
1996
).
26.
K. A.
DeBruin
and
W.
Krassowska
, “
Modeling electroporation in a single cell. II. Effects of ionic concentrations
,”
Biophys. J.
77
,
1225
1233
(
1999
).
27.
A.
Gencoglu
,
F.
Camacho-Alanis
,
V. T.
Nguyen
,
A.
Nakano
,
A.
Ros
, and
A. R.
Minerick
, “
Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules
,”
Electrophoresis
32
,
2436
2447
(
2011
).
28.
W. Y.
Ng
,
Y. C.
Lam
, and
I.
Rodriguez
, “
Experimental verification of Faradaic charging in ac electrokinetics
,”
Biomicrofluidics
3
,
022405
(
2009
).
29.
F. E.
Senftle
,
J. R.
Grant
, and
F. P.
Senftle
, “
Low-voltage DC/AC electrolysis of water using porous graphite electrodes
,”
Electrochim. Acta
55
,
5148
5153
(
2010
).
30.
A. J.
Allmand
and
H. C.
Cocks
, “
CCCXLVII.-The electrolysis of potassium chloride solutions by alternating currents
,”
J. Chem. Soc. (Resumed)
1927
,
2626
2639
.
31.
A.
Ramos
,
H.
Morgan
,
N. G.
Green
, and
A.
Castellanos
, “
Ac electrokinetics: A review of forces in microelectrode structures
,”
J. Phys. D: Appl. Phys.
31
,
2338
2353
(
1998
).
32.
J.
Utoh
and
H.
Harasaki
, “
Damage to erythrocytes from long-term heat-stress
,”
Clin. Sci.
82
,
9
11
(
1992
).
33.
S. O.
Sowemimo-Coker
, “
Red blood cell hemolysis during processing
,”
Transfus. Med. Rev.
16
,
46
60
(
2002
).
34.
J.
Newman
and
K. E.
Thomas-Alyea
,
Electrochemical Systems
(
Wiley
,
2012
).
35.
M.
Lian
,
N.
Islam
, and
J.
Wu
, “
AC electrothermal manipulation of conductive fluids and particles for lab-chip applications
,”
IET Nanobiotechnol.
1
,
36
43
(
2007
).
36.
Z. R.
Gagnon
and
H. C.
Chang
, “
Electrothermal ac electro-osmosis
,”
Appl. Phys. Lett.
94
,
024101
(
2009
).
37.
P.
García-Sánchez
,
A.
Ramos
,
N. G.
Green
, and
H.
Morgan
, “
Traveling-wave electrokinetic micropumps: Velocity, electrical current, and impedance measurements
,”
Langmuir
24
,
9361
9369
(
2008
).
38.
D. C.
Grahame
, “
Electrode processes and the electrical double layer
,”
Annu. Rev. Phys. Chem.
6
,
337
358
(
1955
).
39.
H.
Morgan
and
N. G.
Green
,
AC Electrokinetics: Colloids and Particles
(
Research Studies Press Ltd.
,
2003
).
40.
W. M.
Deen
,
Analysis of Transport Phenomena
, 2 ed. (
Oxford University Press
,
USA
,
2011
).
You do not currently have access to this content.