Various single-cell retention structures (SCRSs) were reported for analysis of single cells within microfluidic devices. Undesirable flow behaviors within micro-environments not only influence single-cell manipulation and retention significantly but also lead to cell damage, biochemical heterogeneity among different individual cells (e.g., different cell signaling pathways induced by shear stress). However, the fundamentals in flow behaviors for single-cell manipulation and shear stress reduction, especially comparison of these behaviors in different microstructures, were not fully investigated in previous reports. Herein, flow distribution and induced shear stress in two different single-cell retention structures (SCRS I and SCRS II) were investigated in detail to study their effects on single-cell trapping using computational fluid dynamics (CFD) methods. The results were successfully verified by experimental results. Comparison between these two SCRS shows that the wasp-waisted configuration of SCRS II has a better performance in trapping and manipulating long cylinder-shaped cardiac myocytes and provides a safer “harbor” for fragile cells to prevent cell damage due to the shear stress induced from strong flows. The simulation results have not only explained flow phenomena observed in experiments but also predict new flow phenomena, providing guidelines for new chip design and optimization, and a better understanding of the cell micro-environment and fundamentals of microfluidic flows in single-cell manipulation and analysis.

1.
A.
Karimi
,
S.
Yazdi
, and
A. M.
Ardekani
,
Biomicrofluidics
7
,
021501
(
2013
).
2.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid. Mech.
36
,
381
(
2004
).
3.
G. M.
Whitesides
,
Nature
442
(
7101
),
368
(
2006
).
4.
X. J.
Li
,
A. V.
Valadez
,
P.
Zuo
, and
Z.
Nie
,
Bioanalysis
4
,
1509
(
2012
).
5.
P.
Zuo
,
X.
Li
,
D. C.
Dominguez
, and
B. C.
Ye
,
Lab Chip
13
,
3921
(
2013
).
6.
G. B.
Salieb-Beugelaar
,
G.
Simone
,
A.
Arora
,
A.
Philippi
, and
A.
Manz
,
Anal. Chem.
82
,
4848
(
2010
).
7.
R. N.
Zare
and
S.
Kim
,
Annu. Rev. Biomed. Eng.
12
,
187
(
2010
).
8.
S.
Lindstrom
and
H.
Andersson-Svahn
,
Lab Chip
10
,
3363
(
2010
).
9.
O.
Brandman
,
J. E.
Ferrell
,
R.
Li
, and
T.
Meyer
,
Science
310
,
496
(
2005
).
10.
S.
Li
,
N. F.
Huang
, and
S.
Hsu
,
Cell. Biochem.
96
,
1110
(
2005
).
11.
G. T.
Roman
,
Y.
Chen
,
P.
Viberg
,
A. H.
Culbertson
, and
C. T.
Culbertson
,
Anal. Bioanal. Chem.
387
,
9
(
2007
).
12.
M.
Cioffi
,
M.
Moretti
 et al,
Biomed. Microdevices
12
,
619
(
2010
).
13.
C. X.
Luo
,
H.
Li
,
C. Y.
Xiong
 et al,
Biomed. Microdevices
9
,
573
(
2007
).
14.
S.
Lindström
,
M.
Hammond
,
H.
Brismar
,
H.
Andersson-Svahn
, and
A.
Ahmadian
,
Lab Chip
9
,
3465
(
2009
).
15.
C. S.
Chen
,
M.
Mrksich
,
S.
Huang
,
G. M.
Whitesides
, and
D. E.
Ingber
,
Science
276
,
1425
(
1997
).
16.
D.
Di Carlo
,
L. Y.
Wu
, and
L. P.
Lee
,
Lab Chip
6
,
1445
(
2006
).
17.
A. M.
Skelley
,
O.
Kirak
,
H.
Suh
,
R.
Jaenisch
, and
J.
Voldman
,
Nat. Methods
6
,
147
(
2009
).
18.
M.
Khoury
,
A.
Bransky
,
N.
Korin
 et al,
Biomed. Microdevices
12
,
1001
(
2010
).
19.
M.
Khabiry
,
B. G.
Chung
,
M. J.
Hancock
 et al,
Small
5
(
10
),
1186
(
2009
).
20.
A.
Manbachi
,
S.
Shrivastava
,
M.
Cioffi
 et al,
Lab Chip
8
,
747
(
2008
).
21.
M.
Kim
,
B. C.
Isenberg
,
J.
Sutin
,
A.
Meller
,
J. Y.
Wong
, and
C. M.
Klapperich
,
Lab Chip
11
,
1089
(
2011
).
22.
P. J.
Lee
,
P. J.
Hung
,
R.
Shaw
,
L.
Jan
, and
L. P.
Lee
,
Appl. Phys. Lett.
86
,
223902
(
2005
).
23.
X. Y.
Peng
and
P. C. H.
Li
,
Anal. Chem.
76
,
5273
(
2004
).
24.
X. J.
Li
and
P. C. H.
Li
,
Anal. Chem.
77
,
4315
(
2005
).
25.
X. J.
Li
,
V.
Ling
, and
P. C. H.
Li
,
Anal. Chem.
80
,
4095
(
2008
).
26.
X. J.
Li
,
Y. C.
Chen
, and
P. C. H.
Li
,
Lab Chip
11
,
1378
(
2011
).
27.
X. J.
Li
,
X.
Xue
, and
P. C. H.
Li
,
Integr. Biol.
1
,
90
(
2009
).
28.
X. J.
Li
,
J. B.
Huang
,
G. F.
Tibbits
, and
P. C. H.
Li
,
Electrophoresis
28
,
4723
(
2007
).
29.
D. A.
Boy
,
F.
Gibou
, and
S.
Pennathur
,
Lab Chip
8
,
1424
(
2008
).
30.
H. M.
Hegab
,
A.
ElMekawy
, and
T.
Stakenborg
,
Biomicrofluidics
7
,
021502
(
2013
).
31.
M.-C.
Kim
,
Z. H.
Wang
,
R. H. W.
Lam
, and
T.
Thorsen
,
J. Appl. Phys.
103
,
044701
(
2008
).
32.
J. V.
Green
,
T.
Kniazeva
,
M.
Abedi
 et al,
Lab Chip
9
,
677
(
2009
).
33.
S.
Yazdi
and
A. M.
Ardekani
,
Biomicrofluidics
6
,
044114
(
2012
).
34.
Z. B.
Liu
,
F.
Huang
,
J. H.
Du
,
W. L.
Shu
,
H. T.
Feng
,
X. P.
Xu
, and
Y.
Chen
,
Biomicrofluidics
7
,
011801
(
2013
).
35.
J. S.
Sun
,
C.
Liu
,
M. M.
Li
,
J. D.
Wang
,
Y. L.
Xianyu
,
G. Q.
Hu
, and
X. Y.
Jiang
,
Biomicrofluidics
7
,
011802
(
2013
).
36.
X. X.
Xu
,
P.
Sarder
,
Z. Y.
Li
, and
A.
Nehorai
,
Biomicrofluidics
7
,
014112
(
2013
).
37.
L. G.
Griffith
and
M. A.
Swartz
,
Nat. Rev. Mol. Cell Biol.
7
,
211
(
2006
).
38.
R. N.
Kieft
,
K. R. A. M.
Schreel
,
G. A. J.
van der Plas
, and
C. C. M.
Rindt
,
Exp. Fluids
33
,
603
(
2002
).
39.
P. K.
Kundu
and
I. M.
Cohen
,
Fluid Mechanics
, 4th ed. (
Elsevier
,
Oxford
,
2008
), pp.
81
121
.
40.
ANSYS FLUENT Theory Guide Release 14.0, ANSYS, Inc., Southpointe,
2011
.
41.
J. P.
Van Doormaal
and
G. D.
Raithby
,
Numer. Heat Transfer
7
(
2
),
147
(
1984
).
42.
H. B.
Yin
,
N.
Pattrick
,
X. L.
Zhang
,
N.
Klauke
,
H. C.
Cordingley
,
S. J.
Haswell
, and
J. M.
Cooper
,
Anal. Chem.
80
,
179
(
2008
).
You do not currently have access to this content.