The way in which bacterial communities colonize flow in porous media is of importance, but basic knowledge on the dynamic of these phenomena is still missing. The aim of this work is to develop microfluidic experiments in order to progress in the understanding of bacteria capture in filters and membranes. PDMS microfluidic devices mimicking filtration processes have been developed to allow a direct dynamic observation of bacteria across 10 or 20 μm width microchannels. When filtered in such devices, bacteria behave surprisingly: Escherichia coli, Pseudomonas aeruginosa or Staphylococcus aureus accumulate in the downstream zone of the filter and form large streamers which oscillate in the flow. In this study, streamer formation is put in evidence for bacteria suspension in non nutritive conditions in less than 1 h. This result is totally different from the one observed in same system with “inert” particles or dead bacteria which are captured in the bottleneck zone and are accumulated in the upstream zone. Observations within different flow geometries (straight channels, connected channels, and staggered row pillars) show that the bacteria streamer development is influenced by the flow configuration and, particularly by the presence of tortuosity within the microchannels zone. These results are discussed at the light of 3D flow simulations. In confined systems and in laminar flow, there is secondary flow (z-velocities) superimposed to the streamwise motion (in xy plane). The presence of the secondary flow in the microsystems has an effect on the bacterial adhesion. A scenario in three steps is established to describe the formation of the streamers and to explain the positive effect of tortuous flow on the development kinetics.

1.
Agbangla
,
G. C.
,
Climent
,
E.
, and
Bacchin
,
P.
, “
Experimental investigation of pore clogging by microparticles: Evidence for a critical flux density of particle yielding arches and deposits
,”
Sep. Purif. Technol.
101
,
42
48
(
2012
).
2.
Bacchin
,
P.
,
Marty
,
A.
,
Duru
,
P.
,
Meireles
,
M.
, and
Aimar
,
P.
, “
Colloidal surface interactions and membrane fouling: Investigations at pore scale
,”
Adv. Colloid Interface Sci.
164
,
2
11
(
2011
).
3.
Balsa
,
T. F.
, “
Secondary flow in a Hele-Shaw cell
,”
J. Fluid Mech.
372
,
25
44
(
1998
).
4.
Burks
,
G. A.
,
Velegol
,
S. B.
,
Paramonova
,
E.
,
Lindenmuth
,
B. E.
,
Feick
,
J. D.
, and
Logan
,
B. E.
, “
Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition
,”
Langmuir
19
,
2366
2371
(
2003
).
11.
de Kerchove
,
A. J.
, and
Elimelech
,
M.
, “
Bacterial swimming motility enhances cell deposition and surface coverage
,”
Environ. Sci. Technol.
42
,
4371
4377
(
2008
).
5.
Drescher
,
K.
,
Shen
,
Y.
,
Bassler
,
B. L.
, and
Stone
,
H. A.
, “
Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems
,”
PNAS
110
,
4345
4350
(
2013
).
6.
Flemming
,
H.-C.
and
Wingender
,
J.
, “
The biofilm matrix
,”
Nat. Rev. Micro.
8
,
623
633
(
2010
).
7.
Gaboriaud
,
F.
,
Gee
,
M. L.
,
Strugnell
,
R.
, and
Duval
,
J. F. L.
, “
Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media
,”
Langmuir
24
,
10988
10995
(
2008
).
8.
Gannon
,
J. T.
,
Manilal
,
V. B.
, and
Alexander
,
M.
, “
Relationship between cell surface properties and transport of bacteria through soil
,”
Appl. Environ. Microbiol.
57
,
190
193
(
1991
); available at http://aem.asm.org/content/57/1/190.short.
9.
Guglielmini
,
L.
,
Rusconi
,
R.
,
Lecuyer
,
S.
, and
Stone
,
H. A.
, “
Three-dimensional features in low-Reynolds-number confined corner flows
,”
J. Fluid Mech.
668
,
33
57
(
2011
).
10.
Jewett
,
D. G.
,
Hilbert
,
T. A.
,
Logan
,
B. E.
,
Arnold
,
R. G.
, and
Bales
,
R. C.
, “
Bacterial transport in laboratory columns and filters: Influence of ionic strength and pH on collision efficiency
,”
Water Res.
29
,
1673
1680
(
1995
).
12.
Lebleu
,
N.
,
Roques
,
C.
,
Aimar
,
P.
, and
Causserand
,
C.
, “
Role of the cell-wall structure in the retention of bacteria by microfiltration membranes
,”
J. Membr. Sci.
326
,
178
185
(
2009
).
13.
Lecuyer
,
S.
,
Rusconi
,
R.
,
Shen
,
Y.
,
Forsyth
,
A.
,
Vlamakis
,
H.
,
Kolter
,
R.
, and
Stone
,
H. A.
, “
Shear stress increases the residence time of adhesion of pseudomonas aeruginosa
,”
Biophys. J.
100
,
341
350
(
2011
).
14.
Li
,
X.
and
Chu
,
H. P.
, “
Membrane bioreactor for the drinking water treatment of polluted surface water supplies
,”
Water Res.
37
,
4781
4791
(
2003
).
15.
Liu
,
Y.
and
Li
,
J.
, “
Role of pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of escherichia coli in porous media
,”
Environ. Sci. Technol.
42
,
443
449
(
2008
).
17.
Marty
,
A.
, “
Formation de panaches bactériens lors de la filtration à travers des microsystèmes
,” Ph.D. dissertation,
University of Toulouse
, France (
2012
).
18.
Marty
,
A.
,
Roques
,
C.
,
Causserand
,
C.
, and
Bacchin
,
P.
, “
Formation of bacterial streamers during filtration in microfluidic systems
,”
Biofouling
28
,
551
562
(
2012
).
30.
McDonald
,
J. C.
,
Duffy
,
D. C.
,
Anderson
,
J. R.
,
Chiu
,
D. T.
,
Wu
,
H.
,
Schueller
,
O. J. A.
, and
Whitesides
,
G. M.
, “
Fabrication of microfluidic systems in poly(dimethylsiloxane)
,”
Electrophoresis
21
,
27
40
(
2000
).
19.
Ngene
,
I. S.
,
Lammertink
,
R. G. H.
,
Wessling
,
M.
, and
Van der Meer
,
W. G. J.
, “
Particle deposition and biofilm formation on microstructured membranes
,”
J. Membr. Sci.
364
,
43
51
(
2010
).
20.
Nguyen
,
D.
,
Joshi-Datar
,
A.
,
Lepine
,
F.
,
Bauerle
,
E.
,
Olakanmi
,
O.
,
Beer
,
K.
,
McKay
,
G.
,
Siehnel
,
R.
,
Schafhauser
,
J.
,
Wang
,
Y.
,
Britigan
,
B. E.
, and
Singh
,
P. K.
, “
Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria
,”
Science
334
,
982
986
(
2011
).
21.
Rusconi
,
R.
,
Lecuyer
,
S.
,
Autrusson
,
N.
,
Guglielmini
,
L.
, and
Stone
,
H. A.
, “
Secondary flow as a mechanism for the formation of biofilm streamers
,”
Biophys. J.
100
,
1392
1399
(
2011
).
22.
Rusconi
,
R.
,
Lecuyer
,
S.
,
Guglielmini
,
L.
, and
Stone
,
H. A.
, “
Laminar flow around corners triggers the formation of biofilm streamers
,”
J. R. Soc. Interface
7
,
1293
1299
(
2010
).
23.
Schäfer
,
A.
,
Harms
,
H.
, and
Zehnder
,
A. J. B.
, “
Bacterial accumulation at the air−water interface
,”
Environ. Sci. Technol.
32
,
3704
3712
(
1998
).
24.
Stoodley
,
P.
,
Lewandowski
,
Z.
,
Boyle
,
J. D.
, and
Lappin-Scott
,
H. M.
, “
Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology
,”
Biotechnol. Bioeng.
65
,
83
92
(
1999
).
25.
Torkzaban
,
S.
,
Tazehkand
,
S. S.
,
Walker
,
S. L.
, and
Bradford
,
S. A.
, “
Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry
,”
Water Resour. Res.
44
,
W04403
, doi: (
2008
).
26.
Valiei
,
A.
,
Kumar
,
A.
,
Mukherjee
,
P. P.
,
Liu
,
Y.
, and
Thundat
,
T.
, “
A web of streamers: biofilm formation in a porous microfluidic device
,”
Lab Chip
12
,
5133
5137
(
2012
).
16.
van Loosdrecht
,
M. C.
,
Lyklema
,
J.
,
Norde
,
W.
,
Schraa
,
G.
, and
Zehnder
,
A. J.
, “
The role of bacterial cell wall hydrophobicity in adhesion
,”
Appl. Environ. Microbiol.
53
,
1893
1897
(
1987
); available at http://aem.asm.org/content/53/8/1893.short.
27.
Vrouwenvelder
,
J. S.
,
Graf von der Schulenburg
,
D. A.
,
Kruithof
,
J. C.
,
Johns
,
M. L.
, and
van Loosdrecht
,
M. C. M.
, “
Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: A feed spacer problem
,”
Water Res.
43
,
583
594
(
2009
).
28.
Walker
,
S. L.
,
Redman
,
J. A.
, and
Elimelech
,
M.
, “
Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport
,”
Langmuir
20
,
7736
7746
(
2004
).
29.
Yazdi
,
S.
and
Ardekani
,
A. M.
, “
Bacterial aggregation and biofilm formation in a vortical flow
,”
Biomicrofluidics
6
,
044114
9
(
2012
).
You do not currently have access to this content.