In the current study, we have developed and fabricated a novel lab-on-a-chip device for the investigation of biofilm responses, such as attachment kinetics and initial biofilm formation, to different hydrodynamic conditions. The microfluidic flow channels are designed using computational fluid dynamic simulations so as to have a pre-defined, homogeneous wall shear stress in the channels, ranging from 0.03 to 4.30 Pa, which are relevant to in-service conditions on a ship hull, as well as other man-made marine platforms. Temporal variations of biofilm formation in the microfluidic device were assessed using time-lapse microscopy, nucleic acid staining, and confocal laser scanning microscopy (CLSM). Differences in attachment kinetics were observed with increasing shear stress, i.e., with increasing shear stress there appeared to be a delay in bacterial attachment, i.e., at 55, 120, 150, and 155 min for 0.03, 0.60, 2.15, and 4.30 Pa, respectively. CLSM confirmed marked variations in colony architecture, i.e.,: (i) lower shear stresses resulted in biofilms with distinctive morphologies mainly characterised by mushroom-like structures, interstitial channels, and internal voids, and (ii) for the higher shear stresses compact clusters with large interspaces between them were formed. The key advantage of the developed microfluidic device is the combination of three architectural features in one device, i.e., an open-system design, channel replication, and multiple fully developed shear stresses.

1.
M.
Salta
,
J.
Wharton
,
Y.
Blache
,
K.
Stokes
, and
J. F.
Briand
,
Environ. Microbiol.
15
,
2879
2893
(
2013
).
2.
D.
Howell
, in
Advances in Marine Antifouling Coatings and Technologies
, edited by
C.
Hellio
and
D.
Yebra
(
Woodhead
,
Cambridge, UK
,
2009
).
3.
J.
Lewthwaite
,
A.
Molland
, and
K.
Thomas
,
Trans. RINA
126
,
269
284
(
1985
).
4.
G.
Bohlander
,
Polym. Mar. Environ.
16
,
1
4
(
1991
).
5.
M.
Schultz
and
G.
Swain
,
J. Fluids Eng.
121
,
733
746
(
1999
).
6.
M.
Schultz
and
G.
Swain
,
Biofouling
15
,
129
139
(
2000
).
7.
M.
Schultz
,
Biofouling
23
,
331
341
(
2007
).
8.
M. P.
Schultz
,
J. A.
Bendick
,
E. R.
Holm
, and
W. M.
Hertel
,
Biofouling
27
,
87
98
(
2011
).
9.
M.
Salta
,
J.
Wharton
,
P.
Stoodley
,
S.
Dennington
,
L.
Goodes
,
S.
Werwinski
,
U.
Mart
,
R.
Wood
, and
K.
Stokes
,
Philos. Trans. R. Soc. London, Ser. A
368
,
4729
4754
(
2010
).
10.
D.
Dusenbery
,
Living at Micro Scale
(
Harvard University Press
,
Cambridge, MA
,
2009
).
11.
L.
Shi
, Ph.D. thesis,
University of Southampton
,
2000
.
12.
R. F.
Brady
, Jr.
,
Prog. Org. Coat.
43
,
188
192
(
2001
).
13.
R.
Holland
,
T.
Dugdale
,
R.
Wetherbee
,
A.
Brennan
,
J.
Finlay
,
J.
Callow
, and
M.
Callow
,
Biofouling
20
,
323
329
(
2004
).
14.
R.
Townsin
and
C.
Anderson
, in
Advances in Marine Antifouling Coatings and Technologies
, edited by
C.
Hellio
and
D.
Yebra
(
Woodhead
,
Cambridge, UK
,
2009
.
15.
S.
Stafslien
,
J.
Daniels
,
B.
Mayo
,
D.
Christianson
,
B.
Chisholm
,
A.
Ekin
,
D.
Webster
, and
G.
Swain
,
Biofouling
23
,
45
54
(
2007
).
16.
S.
Stafslien
,
J.
Daniels
,
B.
Chisholm
, and
D.
Christianson
,
Biofouling
23
,
37
44
(
2007
).
17.
P.
Rupprecht
,
L.
Golé
,
J. P.
Rieu
,
C.
Vézy
,
R.
Ferrigno
,
H. C.
Mertani
, and
C.
Rivière
,
Biomicrofluidics
6
,
014107
(
2012
).
18.
B.
Purevdorj
,
J.
Costerton
, and
P.
Stoodley
,
Appl. Environ. Microbiol.
68
,
4457
(
2002
).
19.
V.
Janakiraman
,
D.
Englert
,
A.
Jayaraman
, and
H.
Baskaran
,
Ann. Biomed. Eng.
37
,
1206
1216
(
2009
).
20.
J.
Kim
,
H. S.
Kim
,
S.
Han
,
J.-Y.
Lee
,
J.-E.
Oh
,
S.
Chung
, and
H.-D.
Park
,
Lab Chip
13
,
1846
1849
(
2013
).
21.
M. T.
Meyer
,
V.
Roy
,
W. E.
Bentley
, and
R.
Ghodssi
,
J. Micromech. Microeng.
21
,
054023
(
2011
).
22.
C.
Burke
,
P.
Steinberg
,
D.
Rusch
,
S.
Kjelleberg
, and
T.
Thomas
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
14288
14293
(
2011
).
23.
ASTM-Standard-D4939-89, 1989 (2007 reapproved).
24.
L.
Richter
,
C.
Stepper
,
A.
Mak
,
A.
Reinthaler
,
R.
Heer
,
M.
Kast
,
H.
Bruckl
, and
P.
Ertl
,
Lab Chip
7
,
1723
1731
(
2007
).
25.
J. W.
Lee
,
J. H.
Nam
,
Y. H.
Kim
,
K. H.
Lee
, and
D. H.
Lee
,
J. Microbiol.
46
,
174
182
(
2008
).
26.
O.
Bahar
,
L.
De La Fuente
, and
S.
Burdman
,
FEMS Microbiology Letters
312
(
1
),
33
39
(
2010
).
27.
M. R.
Benoit
,
C. G.
Conant
,
C.
Ionescu-Zanetti
,
M.
Schwartz
, and
A.
Matin
,
Appl. Environ. Microbiol.
76
,
4136
4142
(
2010
).
28.
A.
Park
,
H.-H.
Jeong
,
J.
Lee
,
K. P.
Kim
, and
C.-S.
Lee
,
BioChip J.
5
,
236
241
(
2011
).
29.
S.
Mbaye
,
P.
Séchet
,
F.
Pignon
, and
J.
Martins
,
Biomicrofluidics
7
,
054105
(
2013
).
30.
W. R. J. D.
Galloway
,
J. T.
Hodgkinson
,
S. D.
Bowden
,
M.
Welch
, and
D. R.
Spring
,
Chem. Rev.
111
,
28
(
2011
).
31.
N.
Bellou
,
E.
Papathanassiou
,
S.
Dobretsov
,
V.
Lykousis
, and
F.
Colijn
,
Biofouling
28
,
199
213
(
2012
).
32.
F.
D'Souza
,
A.
Bruin
,
R.
Biersteker
,
G.
Donnelly
,
J.
Klijnstra
,
C.
Rentrop
, and
P.
Willemsen
,
J. Ind. Microbiol. Biotechnol.
37
,
363
370
(
2010
).
33.
T.
Ekblad
,
G.
Bergstrom
,
T.
Ederth
,
S.
Conlan
,
R.
Mutton
,
A.
Clare
,
S.
Wang
,
Y.
Liu
,
Q.
Zhao
,
F.
D'Souza
,
G.
Donnelly
,
P.
Willemsen
,
M.
Pettitt
,
M.
Callow
,
J.
Callow
, and
B.
Liedberg
,
Biomacromolecules
9
,
2775
2783
(
2008
).
34.
P.
Stewart
and
M.
Franklin
,
Nat. Rev. Microbiol.
6
,
199
210
(
2008
).
35.
A.
Heydorn
,
A. T.
Nielsen
,
M.
Hentzer
,
C.
Sternberg
,
M.
Givskov
,
B. K.
Ersboll
, and
S.
Molin
,
Microbiology
146
,
2395
2407
(
2000
).
36.
R.
Bacabac
,
T.
Smit
,
S.
Cowin
,
J.
Van Loon
,
F.
Nieuwstadt
,
R.
Heethaar
, and
J.
Klein-Nulend
,
J. Biomech.
38
,
159
167
(
2005
).
37.
M.
Wahl
,
F.
Goecke
,
A.
Labes
,
S.
Dobretsov
, and
F.
Weinberger
,
Front. Microbiol.
3
,
292
(
2012
).
38.
P.
Stoodley
,
Z.
Lewandowski
,
J.
Boyle
, and
H.
Lappin-Scott
,
Biotechnol. Bioeng.
65
,
83
92
(
1999
).
39.
J. H.
Jeon
,
C. H.
Lee
,
M. K.
Kim
, and
H. S.
Lee
,
J. Korean Soc. Appl. Biol. Chem.
52
,
720
725
(
2009
).
40.
L.
Hall-Stoodley
,
J.
Costerton
, and
P.
Stoodley
,
Nat. Rev. Microbiol.
2
,
95
108
(
2004
).
41.
M.
Van Loosdrecht
,
D.
Eikelboom
,
A.
Gjaltema
,
A.
Mulder
,
L.
Tijhuis
, and
J.
Heijnen
,
Water Sci. Technol.
32
,
35
43
(
1995
).
42.
M.
Van Loosdrecht
,
C.
Picioreanu
, and
J.
Heijnen
,
FEMS Microbiol. Ecol.
24
,
181
183
(
1997
).
43.
M. C. M.
van Loosdrecht
,
J. J.
Heijnen
,
H.
Eberl
,
J.
Kreft
, and
C.
Picioreanu
,
Antonie van Leeuwenhoek
81
,
245
256
(
2002
).
44.
P.
Stoodley
,
S.
Wilson
,
L.
Hall-Stoodley
,
J. D.
Boyle
,
H. M.
Lappin-Scott
, and
J.
Costerton
,
Appl. Environ. Microbiol.
67
,
5608
5613
(
2001
).
45.
B.
Dunsmore
,
A.
Jacobsen
,
L.
Hall-Stoodley
,
C.
Bass
,
H.
Lappin-Scott
, and
P.
Stoodley
,
J. Ind. Microbiol. Biotechnol.
29
,
347
353
(
2002
).
46.
C.
Picioreanu
,
M. C. M.
van Loosdrecht
, and
J. J.
Heijnen
,
Biotechnol. Bioeng.
72
,
205
218
(
2001
).
47.
A.
Rieu
,
R.
Briandet
,
O.
Habimana
,
D.
Garmyn
,
J.
Guzzo
, and
P.
Piveteau
,
Appl. Environ. Microbiol.
74
,
4491
4497
(
2008
).
48.
M. L.
Kovarik
,
P. C.
Gach
,
D. M.
Ornoff
,
Y.
Wang
,
J.
Balowski
,
L.
Farrag
, and
N. L.
Allbritton
,
Analytical Chem.
84
(
2
),
516
540
(
2011
).
49.
A.
Valiei
,
A.
Kumar
,
P. P.
Mukherjee
,
Y.
Liu
, and
T.
Thundat
,
Lab Chip
12
,
5133
5137
(
2012
).
50.
A.
Kumar
,
D.
Karig
,
R.
Acharya
,
S.
Neethirajan
,
P. P.
Mukherjee
,
S.
Retterer
, and
M. J.
Doktycz
,
Microfluid. Nanofluid.
14
,
895
902
(
2012
).
51.
Y.
Schmitt
,
H.
Hähl
,
C.
Gilow
,
H.
Mantz
,
K.
Jacobs
,
O.
Leidinger
,
M.
Bellion
, and
L.
Santen
,
Biomicrofluidics
4
,
032201
(
2010
).
52.
S.
Yazdi
and
A. M.
Ardekani
,
Biomicrofluidics
6
,
044114
(
2012
).
53.
T.
Das
,
T. K.
Maiti
, and
S.
Chakraborty
,
Integr. Biol.
3
,
684
695
(
2011
).
You do not currently have access to this content.