Optical based analysis in microfluidic and lab-on-a-chip systems are currently considered the gold standard methodology for the determination of end point reactions for various chemical and biological reaction processes. Typically, assays are performed using bulky ancillary apparatus such as microscopes and complex optical excitation and detection systems. Such instrumentation negates many of the advantages offered by device miniaturisation, particularly with respect to overall portability. In this article, we present a CO2 laser ablation technique for rapidly prototyping on-chip planar lenses, in conjunction with capillary action based autonomous microfluidics, to create a miniaturised and fully integrated optical biosensing platform. The presented self-aligned on-chip optical components offer an efficient means to direct excitation light within microfluidics and to directly couple light from a LED source. The device has been used in conjunction with a miniaturised and bespoke fluorescence detection platform to create a complete, palm sized system (≈60 × 80 × 60 mm) capable of performing fluoro-immunoassays. The system has been applied to the detection of cardiac Troponin I, one of the gold standard biomarkers for the diagnosis of acute myocardial infarction, achieving a lower detection limit of 0.08 ng/ml, which is at the threshold of clinically applicable concentrations. The portable nature of the complete system and the biomarker detection capabilities demonstrate the potential of the devised instrumentation for use as a medical diagnostics device at the point of care.

1.
B.
Kuswandi
,
J.
Nuriman
,
J.
Huskens
, and
W.
Verboom
, “
Optical sensing systems for microfluidic devices: A review
,”
Anal. Chim. Acta
601
,
2
141
(
2007
).
2.
F. B.
Myers
and
L. P.
Lee
, “
Innovations in optical microfluidic technologies for point-of-care diagnostics
,”
Lab Chip
8
,
2015
2031
(
2008
).
3.
S.
Camou
,
H.
Fujita
, and
T.
Fujii
, “
PDMS 2D optical lens integrated with microfluidic channels: Principle and characterization
,”
Lab Chip
3
(
1
),
40
45
(
2003
).
4.
M.
Rosenauer
and
M. J.
Vellekoop
, “
A novel microfluidic system for fluorescent sample analysis fabricated by rapid prototyping
,”
IEEE SENSORS 2008 Conference
(
IEEE
,
2008
).
5.
H.
Guo
,
P.
Zhao
,
G.
Xiao
,
Z.
Zhang
, and
J.
Yao
, “
Optical manipulation of microparticles in an SU-8/PDMS hybrid microfluidic chip incorporating a monolithically integrated on-chip lens set
,”
IEEE J. Sel. Top. Quantum Electron.
16
(
4
),
919
926
(
2010
).
6.
J.
Hsieh
,
C. J.
Weng
,
H. L.
Yin
, and
H. Y.
Chou
, “
Realisation and characterization of SU-8 micro cylindrical lenses for in-plane micro optical systems
,”
Microsyst. Technol.
11
,
429
437
(
2005
).
7.
M.
Rosenauer
,
W.
Bechugger
,
I.
Finoulst
,
P.
Verhaert
, and
M.
Vellekoop
, “
Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes
,”
Microfluid Nanofluid
10
,
761
771
(
2011
).
8.
Z.
Wang
,
J.
El-Ali
,
M.
Engelund
,
T.
Gotsaed
,
I. R.
Perch-Nielsen
,
K. B.
Mogensen
,
D.
Snakenborg
,
J. P.
Kutter
, and
A.
Wolff
, “
Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements
,”
Lab Chip
4
,
372
377
(
2004
).
9.
J.
Seo
and
L. P.
Lee
, “
Disposable integrated microfluidics with self-aligned planar microlenses
,”
Sens. Actuators B
99
(
2–3
),
615
622
(
2004
).
10.
J.-C.
Roulet
,
R.
Voelkel
,
H. P.
Herzig
,
S.
Verpoorte
,
N. F.
de Rooij
, and
R.
Daendliker
, “
Microlens systems for fluorescence detection in chemical microsystems
,”
Opt. Eng.
40
(
05
),
814
821
(
2001
).
11.
K.
Naessens
,
H.
Ottevaereb
,
P.
Van Daele
, and
R.
Baets
, “
Flexible fabrication of microlenses in polymer layers with excimer laser ablation
,”
Appl. Surf. Sci.
208–209
,
159
164
(
2003
).
12.
B. R.
Watts
,
Z.
Zhang
,
C. Q.
Xu
,
X.
Cao
, and
M.
Lin
, “
Scattering detection using a photonic-microfluidic integrated device with on-chip collection capabilities
,”
Electrophoresis
(published online
2013
).
13.
B.
Bilenberg
,
T.
Nielsen
,
B.
Clausen
, and
A.
Kristensen
, “
PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics
,”
J. Micromech. Microeng.
14
,
814
818
(
2004
).
14.
M.
Fleger
and
A.
Neyer
, “
PDMS microfluidic chip with integrated waveguides for optical detection,”
Microelectron. Eng.
83
,
1291
1293
(
2006
).
15.
M. I.
Mohammed
and
M. P. Y.
Desmulliez
, “
Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: A review
,”
Lab Chip
11
,
569
595
(
2011
).
16.
M. I.
Mohammed
,
G. J.
Sills
,
M. J.
Brodie
,
E.
Ellis
, and
J. M.
Girkin
, “
A complete miniaturised genotyping system for the detection of single nucleotide polymorphisms in human DNA samples
,”
Sens. Actuators B
139
,
1
83
(
2009
).
17.
J. M.
Girkin
,
M. I.
Mohammed
, and
E. M.
Ellis
, “
A miniaturised integrated biophotonic point-of care genotyping system
,”
Faraday Discuss.
149
,
115
123
(
2011
).
18.
H.
Dacres
,
M M.
Dumancic
,
I.
Horne
, and
S. C.
Trowell
, “
Direct comparison of fluorescence- and bioluminescence-based resonance energy transfer methods for real-time monitoring of thrombin-catalysed proteolytic cleavage
,”
Biosens. Bioelectron.
24
(
5
),
1164
1170
(
2009
).
19.
M. I.
Mohammed
,
E.
Abraham
, and
M. P. Y.
Desmulliez
, “
Rapid laser prototyping of valves for microfluidic autonomous systems
,”
J. Micromech. Microeng.
23
,
035034
(
2013
).
20.
M. I.
Mohammed
and
M. P. Y.
Desmulliez
, “
The manufacturing of packaged capillary action microfluidic systems by means of CO2 laser processing
,”
J. Microsyst. Technol.
19
(
6
),
809
818
(
2013
).
21.
M. I.
Mohammed
and
M. P. Y.
Desmulliez
, “
CO2 laser machining of fully packaged autonomous microfluidic systems
,”
DTIP 2012 - Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS
, Art. No. 6235292, pp.
63
70
(
EDA Publishing
,
2012
).
22.
H.
Klank
,
J. P.
Kutter
, and
O.
Geschke
, “
CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems
,”
Lab Chip
2
,
242
246
(
2002
).
23.
C. G. K.
Malek
, “
Laser processing for bio-microfluidics applications (part I)
,”
Anal. Bioanal. Chem.
385
(
8
),
1351
1361
(
2006
).
24.
C. G. K.
Malek
, “
Laser processing for bio-microfluidics applications (part II)
,”
Anal. Bioanal. Chem.
385
(
8
),
1362
1369
(
2006
).
25.
N. C.
Nayak
,
Y. C.
Lam
,
C. Y.
Yue
, and
A. T.
Sinha
, “
CO2-laser micromachining of PMMA: The effect of polymer molecular weight
,”
J. Micromech. Microeng.
18
,
095020
(
2008
).
26.
R.
Irawan
,
S. C.
Tjin
,
X.
Fang
, and
C. Y.
Fu
, “
Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip
,”
Biomed. Microdevices
9
,
413
419
(
2007
).
27.
H.
Wang
,
S.
Meng
,
K.
Guo
,
Y.
Liu
,
P.
Yang
,
W.
Zhong
, and
B.
Liu
, “
Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip
,”
Electrochem. Commun.
10
,
447
450
(
2008
).
28.
P. T.
Charles
,
A. A.
Adams
,
P. B.
Howell
, Jr.
,
S. A.
Trammell
,
J. R.
Deschamps
, and
A. W.
Kusterbeck
, “
Fluorescence-based sensing of 2,4,6-Trinitrotoluene (TNT) using a multi-channeled poly(methyl methacrylate) (PMMA) microimmunosensor
,”
Sensors
10
,
876
889
(
2010
).
29.
V. S.
Mahajan
and
P.
Jarolim
, “
How to interpret elevated cardiac troponin levels
,”
Circulation
124
,
2350
2354
(
2011
).
30.
B.
McDonnell
,
S.
Hearty
,
P.
Leonard
, and
R.
O'Kennedy
, “
Cardiac biomarkers and the case for point-of-care testing
,”
Clin. Biochem.
42
,
549
561
. (
2009
).
31.
D. A.
Morrow
,
C. P.
Cannon
,
R. L.
Jesse
,
L. K.
Newby
,
J.
Ravkilde
,
A. B.
Storrow
,
A. H. B.
Wu
, and
R. H.
Christenson
, “
National academy of clinical biochemistry laboratory medicine practice guidelines: Clinical characteristics and utilization of biochemical markers in acute coronary syndromes
,”
Clin. Chem.
53
(
4
),
552
574
(
2007
).
32.
L.
Gervais
and
E.
Delamarche
, “
Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates
,”
Lab Chip
9
,
3330
3337
(
2009
).
You do not currently have access to this content.