The ability to separate and analyze chemical species with high resolution, sensitivity, and throughput is central to the development of microfluidics systems. Deterministic lateral displacement (DLD) is a continuous separation method based on the transport of species through an array of obstacles. In the case of force-driven DLD (f-DLD), size-based separation can be modelled effectively using a simple particle-obstacle collision model. We use a macroscopic model to study f-DLD and demonstrate, via a simple scaling, that the method is indeed predominantly a size-based phenomenon at low Reynolds numbers. More importantly, we demonstrate that inertia effects provide the additional capability to separate same size particles but of different densities and could enhance separation at high throughput conditions. We also show that a direct conversion of macroscopic results to microfluidic settings is possible with a simple scaling based on the size of the obstacles that results in a universal curve.

1.
M.
Balvin
,
E.
Sohn
,
T.
Iracki
,
G.
Drazer
, and
J.
Frechette
,
Phys. Rev. Lett.
103
(
7
),
078301
(
2009
).
2.
J. P.
Beech
,
P.
Jönsson
, and
J. O.
Tegenfeldt
,
Lab Chip
9
(
18
),
2698
2706
(
2009
).
3.
J. P.
Beech
and
J. O.
Tegenfeldt
,
Lab Chip
8
(
5
),
657
659
(
2008
).
4.
M.
Heller
and
H.
Bruus
,
J. Micromech. Microeng.
18
(
7
),
075030
(
2008
).
5.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
,
Science
304
(
5673
),
987
990
(
2004
).
6.
T.
Kulrattanarak
,
R. G. M.
Sman
,
C. G. P. H.
Schroën
, and
R. M.
Boom
,
Microfluid. Nanofluid.
10
(
4
),
843
853
(
2011
).
7.
T.
Kulrattanarak
,
R.
Van der Sman
,
Y.
Lubbersen
,
C.
Schroen
,
H.
Pham
,
P.
Sarro
, and
R.
Boom
,
J. Colloid Interface Sci.
354
(
1
),
7
14
(
2011
).
8.
B. R.
Long
,
M.
Heller
,
J. P.
Beech
,
H.
Linke
,
H.
Bruus
, and
J. O.
Tegenfeldt
,
Phys. Rev. E
78
(
4
),
046304
(
2008
).
9.
M.
Luo
,
F.
Sweeney
,
S. R.
Risbud
,
G.
Drazer
, and
J.
Frechette
,
Appl. Phys. Lett.
99
(
6
),
064102
(
2011
).
10.
K. J.
Morton
,
K.
Loutherback
,
D. W.
Inglis
,
O. K.
Tsui
,
J. C.
Sturm
,
S. Y.
Chou
, and
R. H.
Austin
,
Proc. Natl. Acad. Sci. U.S.A.
105
(
21
),
7434
7438
(
2008
).
11.
M.
Al-Fandi
,
M.
Al-Rousan
,
M. A.
Jaradat
, and
L.
Al-Ebbini
,
Rob. Comput.-Integr. Manufact.
27
(
2
),
237
244
(
2011
).
12.
J. A.
Davis
,
D. W.
Inglis
,
K. J.
Morton
,
D. A.
Lawrence
,
L. R.
Huang
,
S. Y.
Chou
,
J. C.
Sturm
, and
R. H.
Austin
,
Proc. Natl. Acad. Sci. U.S.A.
103
(
40
),
14779
14784
(
2006
).
13.
J. V.
Green
,
M.
Radisic
, and
S. K.
Murthy
,
Anal. Chem.
81
(
21
),
9178
9182
(
2009
).
14.
S. H.
Holm
,
J. P.
Beech
,
M. P.
Barrett
, and
J. O.
Tegenfeldt
,
Lab Chip
11
(
7
),
1326
1332
(
2011
).
15.
D. W.
Inglis
,
N.
Herman
, and
G.
Vesey
,
Biomicrofluidics
4
(
2
),
024109
(
2010
).
16.
D. W.
Inglis
,
M.
Lord
, and
R. E.
Nordon
,
J. Micromech. Microeng.
21
(
5
),
054024
(
2011
).
17.
Z. G.
Li
and
G.
Drazer
,
Phys. Rev. Lett.
98
(
5
),
050602
(
2007
).
18.
K.
Loutherback
,
J.
D'Silva
,
L.
Liu
,
A.
Wu
,
R. H.
Austin
, and
J. C.
Sturm
,
AIP Adv.
2
(
4
),
042107
(
2012
).
19.
Q.
Guo
,
S. M.
McFaul
, and
H.
Ma
,
Phys. Rev. E
83
(
5
),
051910
(
2011
).
20.
R.
Quek
,
D. V.
Le
, and
K.-H.
Chiam
,
Phys. Rev. E
83
(
5
),
056301
(
2011
).
21.
M.
Aristov
,
R.
Eichhorn
, and
C.
Bechinger
,
Soft Matter
9
(
8
),
2525
2530
(
2013
).
22.
L.
Bogunovic
,
M.
Fliedner
,
R.
Eichhorn
,
S.
Wegener
,
J.
Regtmeier
,
D.
Anselmetti
, and
P.
Reimann
,
Phys. Rev. Lett.
109
(
10
),
100603
(
2012
).
23.
S. R.
Risbud
and
G.
Drazer
,
J. Fluid Mech.
714
,
213
237
(
2013
).
24.
J.
Frechette
and
G.
Drazer
,
J. Fluid Mech.
627
,
379
401
(
2009
).
25.
T.
Bowman
,
J.
Frechette
, and
G.
Drazer
,
Lab Chip
12
(
16
),
2903
2908
(
2012
).
26.
R.
Devendra
and
G.
Drazer
,
Anal. Chem.
84
(
24
),
10621
10627
(
2012
).
27.
J.
Herrmann
,
M.
Karweit
, and
G.
Drazer
,
Phys. Rev. E
79
(
6
),
061404
(
2009
).
28.
J.
Koplik
and
G.
Drazer
,
Phys. Fluids
22
(
5
),
052005
(
2010
).
29.
S. R.
Risbud
,
M.
Luo
,
J.
Frechette
, and
G.
Drazer
,
Phys. Fluids
25
,
062001
(
2013
).
30.
P. P.
Lele
,
J. W.
Swan
,
J. F.
Brady
,
N. J.
Wagner
, and
E. M.
Furst
,
Soft Matter
7
(
15
),
6844
6852
(
2011
).
31.
K.
He
,
F. B.
Khorasani
,
S. T.
Retterer
,
D. K.
Thomas
,
J. C.
Conrad
, and
R.
Krishnamoorti
,
ACS Nano
7
(
6
),
5122
5130
(
2013
).
32.
S. L.
Eichmann
,
S. G.
Anekal
, and
M. A.
Bevan
,
Langmuir
24
(
3
),
714
721
(
2008
).
33.
R.
van der Sman
,
Comput. Fluids
58
,
63
69
(
2012
).
34.
See supplementary material at http://dx.doi.org/10.1063/1.4833955 for a comparison of results obtained with a single column and with the full array.
35.
R.
Devendra
and
G.
Drazer
, “
Deterministic fractionation of binary suspensions moving past a line of microposts
,”
Microfluid. Nanofluid.
(to be published).

Supplementary Material

You do not currently have access to this content.