Paper-based microfluidics are an increasingly popular alternative to devices with conventional open channel geometries. The low cost of fabrication and the absence of external instrumentation needed to drive paper microchannels make them especially well suited for medical diagnostics in resource-limited settings. Despite the advantages of paper microfluidics, many assays performed using conventional open channel microfluidics are challenging to translate onto paper, such as bead, emulsion, and cell-based assays. To overcome this challenge, we have developed a hybrid open-channel/paper channel microfluidic device. In this design, wick-driven paper channels control the flow rates within conventional microfluidics. We fabricate these hybrid chips using laser-micromachined polymer sheets and filter paper. In contrast to previous efforts that utilized external, macroscopic paper-based pumps, we integrated micro-scale paper and open channels onto a single chip to control multiple open channels and control complex laminar flow-pattern within individual channels. We demonstrated that flow patterns within the open channels can be quantitatively controlled by modulating the geometry of the paper channels, and that these flow rates agree with Darcy's law. The utility of these hybrid chips, for applications such as bead-, cell-, or emulsion-based assays, was demonstrated by constructing a hybrid chip that hydrodynamically focused micrometer-sized polystyrene beads stably for >10 min, as well as cells, without external instrumentation to drive fluid flow.

1.
A. W.
Martinez
,
S. T.
Phillips
,
G. M.
Whitesides
, and
E.
Carrilho
, “
Diagnostics for the developing world: Microfluidic paper-based analytical devices
,”
Anal. Chem.
82
,
3
10
(
2010
).
2.
J. L.
Osborn
,
B.
Lutz
,
E.
Fu
,
P.
Kauffman
,
D. Y.
Stevens
, and
P.
Yager
, “
Microfluidics without pumps: Reinventing the T-sensor and H-filter in paper networks
,”
Lab Chip
10
,
2659
2665
(
2010
).
3.
Y.
Lu
,
W.
Shi
,
J.
Qin
, and
B.
Lin
, “
Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing
,”
Anal. Chem.
82
,
329
335
(
2010
).
4.
S. A.
Klasner
,
A. K.
Price
,
K. W.
Hoeman
,
R. S.
Wilson
,
K. J.
Bell
, and
C. T.
Culbertson
, “
Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva
,”
Anal. Bioanal. Chem.
397
,
1821
1829
(
2010
).
5.
X.
Li
,
D. R.
Ballerini
, and
W.
Shen
, “
A perspective on paper-based microfluidics: Current status and future trends
,”
Biomicrofluidics
6
,
011301
(
2012
).
6.
F. A.
Gomez
, “
The future of microfluidic point-of-care diagnostic devices
,”
Bioanalysis
5
,
1
3
(
2013
).
7.
K.-Y.
Lien
,
L.-Y.
Hung
,
T.-B.
Huang
,
Y.-C.
Tsai
,
H.-Y.
Lei
, and
G.-B.
Lee
, “
Rapid detection of influenza A virus infection utilizing an immunomagnetic bead-based microfluidic system
,”
Biosens. Bioelectron.
26
,
3900
3907
(
2011
).
8.
H.
Zhang
,
S.
Nie
,
C. M.
Etson
,
R. M.
Wang
, and
D. R.
Walt
, “
Oil-sealed femtoliter fiber-optic arrays for single molecule analysis
,”
Lab Chip
12
,
2229
2239
(
2012
).
9.
D.
Issadore
,
J.
Chung
,
H.
Shao
,
M.
Liong
,
A. A.
Ghazani
,
C. M.
Castro
,
R.
Weissleder
, and
H.
Lee
, “
Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector
,”
Sci. Transl. Med.
4
,
141ra92
(
2012
).
10.
D. K.
Wood
,
S.-H.
Oh
,
S.-H.
Lee
,
H. T.
Soh
, and
A. N.
Cleland
, “
High-bandwidth radio frequency Coulter counter
,”
Appl. Phys. Lett.
87
,
184106
(
2005
).
11.
O.
Schmidt
,
M.
Bassler
,
P.
Kiesel
,
C.
Knollenberg
, and
N.
Johnson
, “
Fluorescence spectrometer-on-a-fluidic-chip
,”
Lab Chip
7
,
626
629
(
2007
).
12.
D. D.
Liana
,
B.
Raguse
,
J. J.
Gooding
, and
E.
Chow
, “
Recent advances in paper-based sensors
,”
Sensors
12
,
11505
11526
(
2012
).
13.
X.
Wang
,
J. A.
Hagen
, and
I.
Papautsky
, “
Paper pump for passive and programmable transport
,”
Biomicrofluidics
7
,
014107
(
2013
).
14.
Z.-R.
Xu
,
C.-H.
Zhong
,
Y.-X.
Guan
,
X.-W.
Chen
,
J.-H.
Wang
, and
Z.-L.
Fang
, “
A microfluidic flow injection system for DNA assay with fluids driven by an on-chip integrated pump based on capillary and evaporation effects
,”
Lab Chip
8
,
1658
1663
(
2008
).
15.
J.
Wang
,
H.
Ahmad
,
C.
Ma
,
Q.
Shi
,
O.
Vermesh
,
U.
Vermesh
, and
J.
Heath
, “
A self-powered, one-step chip for rapid, quantitative, and multiplexed detection of proteins from pinpricks of whole blood
,”
Lab Chip
10
,
3157
3162
(
2010
).
16.
P. K.
Yuen
, “
Fluid control in microfluidic devices using a fluid conveyance extension and an absorbent microfluidic flow modulator
,”
Lab Chip
13
,
1737
1742
(
2013
).
17.
L.
Li
,
J.
Tian
,
D.
Ballerini
,
M.
Li
, and
W.
Shen
, “
A study of the transport and immobilisation mechanisms of human red blood cells in a paper-based blood typing device using confocal microscopy
,”
Analyst
138
,
4933
4940
(
2013
).
18.
M.
Al-Tamimi
,
W.
Shen
,
R.
Zeineddine
,
H.
Tran
, and
G.
Garnier
, “
Validation of paper-based assay for rapid blood typing
,”
Anal. Chem.
84
,
1661
1668
(
2012
).
19.
J.
Chung
,
D.
Issadore
,
A.
Ullal
,
K.
Lee
,
R.
Weissleder
, and
H.
Lee
, “
Rare cell isolation and profiling on a hybrid magnetic/size-sorting chip
,”
Biomicrofluidics
7
,
054107
(
2013
).
20.
D.
Di Carlo
, “
Inertial microfluidics
,”
Lab Chip
9
,
3038
3046
(
2009
).
21.
A. D.
Stroock
,
S. K. W.
Dertinger
,
A.
Ajdari
,
M.
Igor
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Chaotic mixer for microchannels
,”
Science
295
,
647
651
(
2002
).
22.
H.
Lee
,
D.
Ham
, and
R. M.
Westervelt
,
CMOS Biotechnology
(
Springer
,
2007
).
23.
E.
Fu
,
S. A.
Ramsey
,
P.
Kauffman
,
B.
Lutz
, and
P.
Yager
, “
Transport in two-dimensional paper networks
,”
Microfluid. Nanofluid.
10
,
29
35
(
2011
).
24.
D.
Issadore
and
R.
Westervelt
,
Point-of-Care Diagnostics on a Chip
(
Springer
,
2013
).
25.
A. R.
Rezk
,
A.
Qi
,
J. R.
Friend
,
W. H.
Li
, and
L. Y.
Yeo
, “
Uniform mixing in paper-based microfluidic systems using surface acoustic waves
,”
Lab Chip
12
,
773
779
(
2012
).
26.
A. W.
Martinez
,
S. T.
Phillips
,
B. J.
Wiley
,
M.
Gupta
, and
G. M.
Whitesides
, “
FLASH: A rapid method for prototyping paper-based microfluidic devices
,”
Lab Chip
8
,
2146
2150
(
2008
).
27.
A.
Hatch
,
A. E.
Kamholz
,
K. R.
Hawkins
,
M. S.
Munson
,
E. A.
Schilling
,
B. H.
Weigl
, and
P.
Yager
, “
A rapid diffusion immunoassay in a T-sensor
,”
Nat. Biotechnol.
19
,
461
465
(
2001
).
28.
N. L.
Jeon
,
S. K. W.
Dertinger
,
D. T.
Chiu
,
I. S.
Choi
,
A. D.
Stroock
, and
G. M.
Whitesides
, “
Generation of solution and surface gradients using microfluidic systems
,”
Langmuir
16
,
8311
8316
(
2000
).
29.
M.
Rosenauer
,
W.
Buchegger
,
I.
Finoulst
,
P.
Verhaert
, and
M.
Vellekoop
, “
Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes
,”
Microfluid. Nanofluid.
10
,
761
771
(
2011
).
30.
D.
Issadore
,
H. J.
Chung
,
J.
Chung
,
G.
Budin
,
R.
Weissleder
, and
H.
Lee
, “
μHall chip for sensitive detection of bacteria
,”
Adv. Healthcare Mater.
2
,
1224
1228
(
2013
).
31.
A. D.
Rhim
,
E. T.
Mirek
,
N. M.
Aiello
,
A.
Maitra
,
J. M.
Bailey
,
F.
McAllister
,
M.
Reichert
,
G. L.
Beatty
,
A. K.
Rustgi
,
R. H.
Vonderheide
 et al, “
EMT and dissemination precede pancreatic tumor formation
,”
Cell
148
,
349
361
(
2012
).
32.
A. W.
Martinez
,
S. T.
Phillips
, and
G. M.
Whitesides
, “
Three-dimensional microfluidic devices fabricated in layered paper and tape
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
19606
19611
(
2008
).
33.
D.
Di Carlo
,
L. Y.
Wu
, and
L. P.
Lee
, “
Dynamic single cell culture array
,”
Lab Chip
6
,
1445
1449
(
2006
).
34.
K.
Ahn
,
C.
Kerbage
,
T. P.
Hunt
,
R. M.
Westervelt
,
D. R.
Link
, and
D. A.
Weitz
, “
Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices
,”
Appl. Phys. Lett.
88
,
024104
024104
(
2006
).
35.
D.
Issadore
,
T.
Franke
,
K. A.
Brown
,
T. P.
Hunt
, and
R. M.
Westervelt
, “
High-voltage dielectrophoretic and magnetophoretic hybrid integrated circuit/microfluidic chip
,”
J. Microelectromech. Syst.
18
,
1220
1225
(
2009
).
36.
J. D.
Adams
,
U.
Kim
, and
H. T.
Soh
, “
Multitarget magnetic activated cell sorter
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
18165
18170
(
2008
).
37.
B.
Lutz
,
T.
Liang
,
E.
Fu
,
S.
Ramachandran
,
P.
Kauffman
, and
P.
Yager
, “
Dissolvable fluidic time delays for programming multi-step assays in paper diagnostics
,”
Lab Chip
13
,
2840
2847
(
2013
).
You do not currently have access to this content.