A new microfluidic device with liquid-droplet merging and droplet storage functions for the controlled release of drugs from microcapsules is reported. A switching channel is designed and integrated within the microfluidic device, facilitating the generation and capturing of uniform droplets by the storage chambers. The drug model is the MnCO3 microparticle, which is encapsulated by a microcapsule and fabricated using a simple layer-by-layer nanoassembly process. The merging function is used for dynamically adding the control solution into the droplets, which contain drugs within the microcapsules (DWμCs) and water. The storage chambers are used for collecting DWμCs-laden droplets so that the controlled-drug release in specific droplets can be monitored for an extended period of time, which has been experimentally implemented successfully. This technology could offer a promising technical platform for the long-term observation and studies of drug effects on specific cells in a controlled manner, which is especially useful for single cell analysis.

1.
J.
Santini
,
A.
Richards
,
R.
Scheidt
,
M.
Cima
, and
R.
Langer
,
Angew. Chem., Int. Ed.
39
,
2396
(
2000
).
2.
A.
Esser-Kahn
,
S.
Odom
,
N.
Scotto
,
S.
White
, and
J.
Moore
,
Macromolecules
44
,
5539
(
2011
).
3.
B.
Radt
,
T.
Smith
, and
F.
Caruso
,
Adv. Mater.
16
,
2184
(
2004
).
4.
E.
Gultepe
,
D.
Nagesha
,
S.
Sridhar
, and
M.
Amiji
,
Adv. Drug Delivery Rev.
62
(
3
),
305
(
2010
).
5.
V.
Doan
and
M.
Sailor
,
Science
256
,
1791
(
1992
).
6.
T.
Zhang
,
Z.
Gong
,
R.
Giorno
, and
L.
Que
,
Opt. Express
18
(
19
),
20282
(
2010
).
7.
T.
Zhang
,
P.
Pathak
,
S.
Karandikar
,
R.
Giorno
, and
L.
Que
,
Biosens. Bioelectron.
30
,
128
(
2011
).
8.
T.
Lagus
and
J.
Edd
,
J. Phys. D: Appl. Phys.
46
,
114005
(
2013
).
9.
T.
Tran
,
F.
Lan
,
C.
Thompson
, and
A.
Abate
,
J. Phys. D: Appl. Phys.
46
,
114004
(
2013
).
10.
Z.
Gong
,
F.
Nie
,
T.
Zhang
,
P.
Pathak
,
Z.
Wang
,
H.
Zhao
,
S.
Wong
, and
L.
Que
, in
Proceedings of IEEE International Conference on MEMS
(
2010
), p.
1015
.
11.
Z.
Gong
,
H.
Zhao
,
T.
Zhang
,
F.
Nie
,
P.
Pathak
,
K.
Cui
,
Z.
Wang
,
S.
Wong
, and
L.
Que
,
Biomed. Microdevices
13
(
1
),
215
(
2011
).
12.
Y.
He
,
W.
Cheng
,
Y.
Zhao
,
Y.
Lvov
, and
L.
Que
, in
Proceedings of IEEE Sensors
(
IEEE
,
2012
), pp.
781
784
.
13.
W.
Cheng
,
Y.
He
, and
L.
Que
, “
Controlled drug release in a microfluidic device with droplet merging and storage functions
,”
Proc. IEEE Sensors
(in press).
14.
S.
Bithi
and
S.
Vanapalli
,
Biomicrofluidics
4
,
044110
(
2010
).
15.
See supplementary material at http://dx.doi.org/10.1063/1.4829776 for the detailed dimensions of the microfluidic device.
16.
Z.
Gong
,
S.
Penmesta
,
Z.
Zheng
,
Y.
Lvov
, and
L.
Que
, in
Proceedings of Solid-State Sensors, Actuators and Microsystems Conference
(
IEEE
,
2009
), p.
1043
.
17.
E.
Anglin
,
M.
Schwartz
,
V.
Ng
,
L.
Perelman
, and
M.
Sailor
,
Langmuir
20
,
11264
(
2004
).
18.
S.
Simovic
,
D.
Losic
, and
K.
Vasilev
,
Chem. Commun.
46
,
1317
(
2010
).
19.
M.
Bringer
,
C.
Gerdts
,
H.
Song
,
J.
Tice
, and
R.
Ismagilov
,
Philos. Trans. R. Soc. London, Ser. A
362
,
1087
(
2004
).
20.
Y.
Lvov
,
A.
Antipov
,
A.
Mamedov
,
H.
Mohwald
, and
G.
Sukhorukov
,
Nano Lett.
1
,
125
(
2001
).
21.
P.
Gil
,
L.
del Mercato
,
P.
del Pino
,
A.
Munoz Javier
, and
W.
Parak
,
Nanotoday
3
,
12
(
2008
).
22.
S.
Sundberg
,
Curr. Opin. Biotechnol.
11
,
47
(
2000
).
23.
D.
Dunn
and
I.
Feygin
,
Drug Discovery Today
5
,
S84
(
2000
).
24.
J.
Wolcke
and
D.
Ullman
,
Drug Discovery Today
6
,
637
(
2001
).

Supplementary Material

You do not currently have access to this content.