Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting. Using this device, cells could form uniformly sized spheroids due to strong cell–cell interactions and the spatial confinement of microfluidic culture chambers. We demonstrated cell spheroid formation and culture in the designed devices using embryonic stem cells, carcinoma cells, and fibroblasts. We further scaled up the device capable of simultaneously forming and culturing 5000 spheroids in a single chip. Finally, we demonstrated harvesting of the cultured spheroids from the device with a simple setup. The harvested spheroids possess great integrity, and the cells can be exploited for further flow cytometry assays due to the ample cell numbers.

1.
F.
Pampaloni
,
E.
Reynaud
, and
E.
Stelzer
,
Nat. Rev. Mol. Cell. Biol.
8
,
839
(
2007
).
2.
T.
Bartosh
,
J.
Ylöstalo
,
A.
Mohammadipoor
,
N.
Bazhanov
,
K.
Coble
,
K.
Claypool
,
R.
Lee
,
H.
Choi
, and
D.
Prockop
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
13724
(
2010
).
4.
Y.-C.
Tung
,
A.
Hsiao
,
S.
Allen
,
Y.
Torisawa
,
M.
Ho
, and
S.
Takayama
,
Analyst
136
,
473
(
2011
).
5.
Y.
Hwang
,
B.
Chung
,
D.
Ortmann
,
N.
Hattori
,
H.
Moeller
, and
A.
Khademhosseini
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
16978
(
2009
).
6.
S.
Dang
,
S.
Gerecht-Nir
,
J.
Chen
,
J.
Itskovitz-Eldor
, and
P. W.
Zandastra
,
Stem Cells
22
,
275
(
2004
).
7.
E.
Ng
,
R.
Davis
,
L.
Azzola
,
E.
Stanley
, and
A.
Elefanty
,
Blood
106
,
1601
(
2005
).
8.
W.
Prudhomme
,
G.
Daley
,
P.
Zandstra
, and
D.
Lauffenburger
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
2900
(
2004
).
9.
R.
Lin
and
H.
Chang
,
Biotechnology. J.
3
,
1172
(
2008
).
10.
J.
Frieddrich
,
R.
Ebner
, and
L.
Kunz-schughart
,
Int. J. Radiat. Biol.
83
,
849
(
2007
).
11.
P.
Hung
,
P.
Lee
,
P.
Sabounchi
,
R.
Lin
, and
L. P.
Lee
,
Biotechnol. Bioeng.
89
,
1
(
2005
).
12.
P.
Dittrich
and
A.
Manz
,
Nat. Rev. Drug. Discov.
5
,
210
(
2006
).
13.
J.
Yeon
and
J.
Park
,
Biochip. J.
1
,
17
(
2007
).
14.
E.
Young
and
D.
Beebe
,
Chem. Soc. Rev.
39
,
1036
(
2010
).
15.
N.
Douville
,
P.
Zamankhan
,
Y.-C.
Tung
,
R.
Li
,
B.
Vaughan
,
J.
White
,
J.
Grotberg
, and
S.
Takayama
,
Lab Chip
11
,
609
(
2011
).
16.
Y.-A.
Chen
,
A. D.
King
,
H.-C.
Shih
,
C.-C.
Peng
,
C.-Y.
Wu
,
W.-H.
Liao
, and
Y.-C.
Tung
,
Lab Chip
11
,
3626
(
2011
).
17.
K.
Ziolkowska
,
E.
Jedrych
,
R.
Kwapiszewski
,
J.
Lopacinska
,
M.
Skolimowski
, and
M.
Chudy
,
Sens. Actuators B
145
,
533
(
2010
).
18.
A.
Hsiao
,
Y.
Torisawa
,
Y.-C.
Tung
,
S.
Sud
,
R.
Taichman
,
K.
Pienta
, and
S.
Takayama
,
Biomaterials
30
,
3020
(
2009
).
19.
Y.
Torisawa
,
A.
Takagi
,
Y.
Nahimoto
,
T.
Yasukawa
,
H.
Shiku
, and
T.
Matsue
,
Biomaterials
28
,
559
(
2007
).
20.
L.
Wu
,
D.
Di Carlo
, and
L.
Lee
,
Biomed. Microdevices
10
,
197
(
2008
).
21.
Y.
Toh
,
C.
Zhang
,
J.
Zhang
,
Y.
Khong
,
S.
Chang
, and
V.
Samper
,
Lab Chip
7
,
302
(
2007
).
22.
K.
Ziółkowska
,
R.
Kwapiszewski
,
A.
Stelmachowska
,
M.
Chudy
,
A.
Dybko
, and
Z.
Brzózka
,
Sens. Actuators, B
173
,
908
(
2012
).
23.
T.
Anada
,
J.
Fukuda
,
Y.
Sai
, and
O.
Suzuki
,
Biomaterials
33
,
8430
(
2012
).
24.
Y.
Torisawa
,
B.
Chueh
,
D.
Huh
,
P.
Ramamurthy
,
T.
Roth
,
K.
Barald
, and
S.
Takayama
,
Lab Chip
7
,
770
(
2007
).
25.
E.
Kang
,
Y.
Choi
,
Y.
Jun
,
B. G.
Chung
, and
S.
Lee
,
Lab Chip
10
,
2651
(
2010
).
26.
K.
Lee
,
C.
Kim
,
J.
Young Yang
,
H.
Lee
,
B.
Ahn
,
L.
Xu
,
J. Y.
Kang
, and
K. W.
Oh
,
Biomicrofluidics
6
,
014114
(
2012
).
27.
S.
Agastin
,
U.
Giang
,
Y.
Geng
,
L.
Delouise
, and
M.
King
,
Biomicrofludics
5
,
024110
(
2011
).
28.
T.
Kim
and
Y.
Cho
,
Lab Chip
11
,
1825
(
2011
).
29.
H.
Jin
,
Y.
Cho
,
J.
Gu
,
J.
Kim
, and
Y.
Oh
,
Lab Chip
11
,
115
(
2011
).
30.
T.
Okuyama
,
H.
Yamazoe
,
N.
Mochizuki
,
A.
Khademhosseini
,
H.
Suzuki
, and
J.
Fukuda
,
J. Biosci. Bioeng.
110
,
572
(
2010
).
31.
J.
Fukuda
and
K.
Nakazawa
,
Biomicrofluidics
5
,
022205
(
2011
).
32.
G.
Jeong
,
Y.
Jun
,
J.
Song
,
S.
Shin
, and
S.
Lee
,
Lab Chip
12
,
159
(
2012
).
33.
M.
Eddings
and
B.
Gale
,
J. Micromech. Microeng.
16
,
2396
(
2006
).
34.
J.
Friend
and
L.
Yeo
,
Biomicrofluidics
4
,
026502
(
2010
).
35.
M.
Cioffi
,
M.
Moretti
,
A.
Manbachi
,
B.
Chung
,
A.
Khademhosseini
, and
G.
Dubini
,
Biomed. Microdevices
12
,
619
(
2010
).
36.
M.
Khabiry
,
B.
Chung
,
M.
Hancock
,
H.
Soundararajan
,
Y.
Du
,
D.
Cropek
,
W.
Lee
, and
A.
Khademhosseini
,
Small
5
,
1186
(
2009
).
37.
M.
Rhodes
,
Introduction to Particle Technology
, 2nd ed. (
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2008
).
38.
W. H.
Grover
,
A. K.
Bryan
,
M.
Diez-Silva
,
S.
Suresh
,
J. M.
Higgins
, and
S. R.
Manalis
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
10992
(
2011
).
39.
See supplementary material at http://dx.doi.org/10.1063/1.4824480 for videos demonstrating flow characteristics of cells within the microfluidic channels at various flow rates, and figures of numerical simulation and experimental characterization of spheroid movements inside the device.

Supplementary Material

You do not currently have access to this content.