This paper presents the design, fabrication, and testing of a magnetophoretic bioseparation chip for the rapid isolation and concentration of CD4 + T cells from the peripheral blood. In a departure from conventional magnetic separation techniques, this microfluidic-based bioseperation device has several unique features, including locally engineered magnetic field gradients and a continuous flow with a buffer switching scheme to improve the performance of the separation process. Additionally, the chip is capable of processing significantly smaller sample volumes than conventional methods and sample losses are eliminated due to decreased handling. Furthermore, the possibility of sample-to-sample contamination is reduced with the disposable format. The overall dimensions of the device were 22 mm by 60 mm by 1 mm, approximately the size of a standard microscope slide. The results indicate a cell purity of greater than 95% at a sample flow rate of 50 ml/h and a cell recovery of 81% at a sample flow rate of 10 ml/h. The cell purity was found to increase with increasing the sample flow rate. However, the cell recovery decreases with an increase in the flow rate. A parametric study was also performed to investigate the effects of channel height, substrate thickness, magnetic bead size, and number of beads per cell on the cell separation performance.

1.
K.
Kato
and
A.
Radbruch
,
Cytometry
14
,
384
392
(
1993
).
2.
B. H.
Pyle
,
S. C.
Broadaway
, and
G. A.
Mcfeters
,
Appl. Environ. Microbiol.
65
(
5
),
1966
1972
(
1999
); available at http://aem.asm.org/content/65/5/1966.
3.
J. W.
Semple
,
D.
Allen
,
W.
Chang
,
P.
Castaldi
, and
J.
Freedamn
,
Cytometry
14
,
955
960
(
1993
).
4.
T. T.
Hansel
,
I. J.
De-Vries
,
T.
Iff
,
S.
Rihs
,
M.
Wandzilak
,
S.
Betz
,
K.
Blaser
, and
C.
Walker
,
J. Immunol. Methods
145
,
105
110
(
1991
).
5.
B.
Schmitz
,
A.
Radbruch
,
T.
Kummel
,
C.
Wickenhauser
,
H.
Korb
,
M. L.
Hansman
,
J.
Thiele
, and
R.
Fischer
,
Eur. J. Haematol.
52
,
267
275
(
1994
).
6.
S.
Miltenyi
,
W.
Muller
,
W.
Weichel
, and
A.
Radbruch
,
Cytometry
11
,
231
238
(
1990
).
7.
S. L.
Waldrop
,
C.
Pitcher
,
D. M.
Peterson
,
V. C.
Maino
, and
L. J.
Picker
,
J. Clin. Invest.
99
,
1739
1750
(
1997
).
8.
H.
Brosterhus
,
S.
Brings
,
H.
Leyendeckers
,
R. A.
Manz
,
S.
Miltenyi
,
A.
Radbruch
,
M.
Assenmacher
, and
J.
Schimtz
,
Eur. J. Immunol.
29
,
4053
4059
(
1999
).
9.
V. I.
Furdui
and
D. J.
Harrison
,
Lab Chip
4
,
614
618
(
2004
).
10.
D. W.
Inglis
,
R.
Riehn
,
R. H.
Austin
, and
J. C.
Sturm
,
Appl. Phys. Lett.
85
,
5093
5095
(
2004
).
11.
R.
Wirix-Speetjens
,
W.
Fyen
,
J.
De Boeck
, and
G.
Borghs
,
J. Appl. Phys.
99
,
103903
(
2006
).
12.
C.
Liu
,
L.
Lagae
, and
G.
Borghs
,
Appl. Phys. Lett.
90
,
184109
(
2007
).
13.
M.
Bu
,
T. B.
Christensen
,
K.
Smistrup
,
A.
Wolff
, and
M. F.
Hansen
,
Sens. Actuators A
145–146
,
430
436
(
2008
); available at http://www.sciencedirect.com/science/article/pii/S0924424707008953.
14.
M. D.
Estes
,
B.
Ouyang
,
S.
Ho
, and
C. H.
Ahn
,
J. Micromech. Microeng.
19
,
095015
(
2009
).
15.
E. D.
Pratt
,
C.
Huang
,
B. G.
Hawkins
,
J. P.
Gleghorn
, and
B. J.
Kirby
,
Chem. Eng. Sci.
66
,
1508
1522
(
2011
).
16.
N.
Pamme
and
C.
Wilhelm
,
Lab Chip
6
,
974
980
(
2006
).
17.
A. A. S.
Bhagat
,
H.
Bow
,
H. W.
Hou
,
S. J.
Tan
,
J.
Han
, and
C. T.
Lim
,
Med. Biol. Eng. Comput.
48
,
999
1014
(
2010
).
18.
S. A.
Peyman
,
A.
Iles
, and
N.
Pamme
,
Lab Chip
9
,
3110
3117
(
2009
).
19.
M.
Zborowski
and
J. J.
Chalmers
,
Anal. Chem.
83
,
8050
8056
(
2011
).
20.
M.
Hoyos
,
L.
Moore
,
P. S.
Williams
, and
M.
Zborowski
,
J. Magn. Magn. Mater.
323
,
1384
1388
(
2011
).
21.
D.
Robert
,
N.
Pamme
,
H.
Conjeaud
,
F.
Gazeau
,
A.
Iles
, and
C.
Wilhelm
,
Lab Chip
11
,
1902
1910
(
2011
).
22.
T.
Schneider
,
S.
Karl
,
L. R.
Moore
,
J. J.
Chalmers
,
P. S.
Williams
, and
M.
Zborowski
,
Analyst
135
,
62
70
(
2010
).
23.
K.
Hoshino
,
Y.-Y.
Huang
,
N.
Lane
,
M.
Huebschman
,
J. W.
Uhr
,
E. P.
Frenkel
, and
X.
Zhang
,
Lab Chip
11
,
3449
3457
(
2011
).
24.
F.
Shen
,
H.
Hwang
,
Y. K.
Hahn
, and
J.-K.
Park
,
Anal. Chem.
84
,
3075
3081
(
2012
).
25.
N.
Xia
,
T. P.
Hunt
,
B. T.
Mayers
,
E.
Alsberg
,
G. M.
Whitesides
,
R. M.
Westervelt
, and
D. E.
Ingber
,
Biomed. Microdevices
8
,
299
308
(
2006
).
26.
Y.-H.
Lin
,
Y.-J.
Chen
,
C.-S.
Lai
,
Y.-T.
Chen
,
C.-L.
Chen
,
J.-S.
Yu
, and
Y.-S.
Chang
,
Biomicrofluidics
7
,
024103
(
2013
).
27.
A.
Sofla
,
B.
Cirkovic
,
A.
Hsieh
,
J. W.
Miklas
,
N.
Filipovic
, and
M.
Radisic
,
Biomicrofluidics
7
,
014110
(
2013
).
28.
M.
Donolato
,
B. T.
Dalslet
, and
M. F.
Hansen
,
Biomicrofluidics
6
,
024110
(
2012
).
29.
E. M.
Purcell
,
Electricity and Magnetism
(
McGraw-Hill, Inc.
,
New York, NY
,
1985
).
30.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley and Sons, Inc.
,
Hoboken, NJ
,
1999
).
31.
B. I.
Bleaney
and
B.
Bleaney
,
Electricity and Magnetism
(
Oxford University Press
,
Oxford
,
1989
).
32.
D. A.
Bartholomeusz
,
R. W.
Boutte
, and
J. D.
Andrade
,
J. Microelectromech. Syst.
14
,
1364
1374
(
2005
).
33.
I.
Safaryk
and
M.
Safarykova
,
Scientific and Clinical Applications of Magnetic Carriers
, edited by
U.
Hafeli
,
W.
Schutt
,
J.
Teller
, and
M.
Zborowski
(
Plenum Press
,
New York
,
1997
).
You do not currently have access to this content.