The prostate biopsy method shows a high false negative result because the suspicious tissue considered as cancer is not confirmed during tissue sampling. Thus, repeated biopsy procedures and diagnostic errors in relation to prostate cancer frequently occur. The purpose of this research is to enhance the prostate cancer detection rate by using microfluidic electrical impedance spectroscopy (μEIS), which allows real-time measurement of the electrical impedance of a single human prostate normal cell and cancer cell. The μEIS was equipped with a movable flexible membrane, which is operated by pneumatic pressure to capture the single cell on the surface of sensing electrodes. The forced tight contact between the cell and electrodes makes it possible to measure the electrical characteristics of the cell with a high sensitivity. The μEIS discriminates well between normal human prostate cells (RWPE-1) and cancer cells (PC-3) at 8.7 kHz based on the electrical signal responses of the cells. The average difference rates of admittance magnitude and susceptance are 54.55% and 54.59%, respectively. The developed μEIS also shows high repeatability, which was verified by a deionized water test conducted before and after each cell assay; the maximum variance of both the impedance and admittance at 8.7 kHz was as small as 9.48%.

1.
P. D.
Baade
,
D. R.
Youlden
, and
L. J.
Krnjacki
,
Mol. Nutr. Food Res.
53
,
171
(
2009
).
2.
M. K.
Brawer
and
R.
Kirby
,
Fast Facts: Prostate Specific Antigen
(
Health Press
,
Oxford
,
1999
), p.
4
.
3.
W. J.
Catalona
,
J. P.
Richie
,
F. R.
Ahmann
,
M. A.
Hudson
,
P. T.
Scardino
,
R. C.
Flanigan
,
J. B.
de Kernion
,
T. L.
Ratliff
,
L. R.
Kavoussi
,
B. L.
Dalkin
 et al.,
J. Urol.
151
,
1283
(
1994
); available at http://www.ncbi.nlm.nih.gov/pubmed/7512659.
4.
K. A.
Roehl
,
J. A.
Antenor
, and
W. J.
Catalona
,
J. Urol.
167
,
2435
(
2002
).
5.
T.
Graif
,
S.
Loeb
,
K. A.
Roehl
,
S. N.
Gashti
,
C.
Griffin
,
X.
Yu
, and
W. J.
Catalona
,
J. Urol.
178
,
88
(
2007
).
6.
O.
Ukimura
,
J. A.
Coleman
,
A.
de la Taille
,
M.
Emberton
,
J. I.
Epstein
,
S. J.
Freedland
,
G.
Giannarini
,
A. S.
Kibel
,
R.
Montironi
,
G.
Ploussard
,
M. J.
Roobol
,
V.
Scattoni
, and
J. S.
Jones
,
Eur. Urol.
63
,
214
(
2013
).
7.
P. A.
Pinto
,
P. H.
Chung
,
A. R.
Rastinehad
,
A. A.
Baccala
,
J.
Kruecker
,
C. J.
Benjamin
,
S.
Xu
,
P.
Yan
,
S.
Kadoury
,
C.
Chua
,
J. K.
Locklin
,
B.
Turkbey
,
J. H.
Shih
,
S. P.
Gates
,
C.
Buckner
,
G.
Bratslavsky
,
W. M.
Linehan
,
N. D.
Glossop
,
P. L.
Choyke
, and
B. J.
Wood
,
J. Urol.
186
,
1281
(
2011
).
8.
C. G.
Overduin
,
J. J.
Futterer
, and
J. O.
Barentsz
,
Curr. Urol. Rep.
14
,
209
(
2013
).
9.
S.
Shim
,
M. G.
Kim
,
K.
Jo
,
Y. S.
Kang
,
B.
Lee
,
S.
Yang
,
S.
Shin
, and
J.
Lee
,
J. Biomech. Eng.
132
,
104501
(
2010
).
10.
D. P.
Poenar
,
C.
Iliescu
,
M.
Carp
,
A. J.
Pang
, and
K. J.
Leck
,
Sens. Actuators, A
139
,
162
(
2007
).
11.
S. B.
Prakash
and
P.
Abshire
,
IEEE Sens. J.
7
,
440
(
2007
).
12.
Q.
Tan
,
G. A.
Ferrier
,
B. K.
Chen
,
C.
Wang
, and
Y.
Sun
,
Biomicrofluidics
6
,
034112
(
2012
).
13.
J.
Chen
,
Y.
Zheng
,
Q.
Tan
,
Y. L.
Zhang
,
J.
Li
,
W. R.
Geddie
,
M. A. S.
Jewett
, and
Y.
Sun
,
Biomicrofluidics
5
,
014113
(
2011
).
14.
A. C.
Sabuncu
,
J.
Zhuang
,
J. F.
Kolb
, and
A.
Beskok
,
Biomicrofluidics
6
,
034103
(
2012
).
15.
K.
Luongo
,
A.
Holton
,
A.
Kaushik
,
P.
Spence
,
B.
Ng
,
R.
Deschenes
,
S.
Sundaram
, and
S.
Bhansali
,
Biomicrofluidics
7
,
034108
(
2013
).
16.
M.
Javanmard
,
A. H.
Talasaz
,
M.
Nemat-Gorgani
,
F.
Pease
,
M.
Ronaghi
, and
R. W.
Davis
,
Biomicrofluidics
1
,
044103
(
2007
).
17.
G.
Kang
,
J. C.
Kim
,
S.
Kim
, and
J. H.
Lee
, in
Proceedings of the 6th International Conference on Biomedical Electronics and Devices, Barcelona, Spain, 11–14 February
(
SciTePress
,
2013
), pp.
47
50
.
18.
J.
An
,
J.
Lee
,
Y.
Kim
,
B.
Kim
, and
S.
Lee
, “
Analysis of cell separation efficiency in dielectrophoresis-activated cell sorter
,” in
Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 6–9 January 2008
(
IEEE
,
2008
), pp.
965
969
.
19.
Y. C.
Kim
,
S.
Park
, and
J.
Park
,
Analyst
133
,
1432
(
2008
).
20.
H.
Morgan
,
T.
Sun
,
D.
Holmes
,
S.
Gawad
, and
N. G.
Green
,
J. Phys. D
40
,
61
(
2007
).
21.
I.
Giaever
and
C. R.
Keese
,
Proc. Natl. Acad. Sci. U.S.A.
88
,
7896
(
1991
).
23.
J. C.
Lotters
,
W.
Olthuis
,
P. H.
Veltink
, and
P.
Bergveld
,
J. Micromech. Microeng.
7
,
145
(
1997
).
24.
E.
Bassous
,
IEEE Trans. Electron Devices
25
,
1178
(
1978
).
25.
M.
Carminati
,
M. D.
Vahey
,
A.
Rottigni
,
G.
Ferrari
,
J.
Voldman
, and
M.
Sampietro
, in
Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands, 3–7 October 2010
(
Chemical and Biological Microsystems Society
,
2010
), pp.
1394
1396
.
26.
H.
Takamatsu
,
R.
Takeya
,
S.
Naito
, and
H.
Sumimoto
,
J. Biomech.
38
,
117
(
2005
).
27.
A.
Han
,
L.
Yang
, and
A. B.
Frazier
,
Clin. Cancer Res.
13
,
139
(
2007
).
28.
G.
Kang
,
S. K.
Yoo
,
H.
Kim
, and
J.
Lee
,
IEEE Sens. J.
12
,
1084
(
2012
).
30.
J.
Yang
,
Y.
Huang
,
X.
Wang
,
X. B.
Wang
,
F. F.
Becker
, and
P. R. C.
Gascoyne
,
Biophys. J.
76
,
3307
(
1999
).
You do not currently have access to this content.