Detection of proteins and nucleic acids is dominantly performed using optical fluorescence based techniques, which are more costly and timely than electrical detection due to the need for expensive and bulky optical equipment and the process of fluorescent tagging. In this paper, we discuss our study of the electrical properties of nucleic acids and proteins at the nanoscale using a nanoelectronic probe we have developed, which we refer to as the Nanoneedle biosensor. The nanoneedle consists of four thin film layers: a conductive layer at the bottom acting as an electrode, an oxide layer on top, and another conductive layer on top of that, with a protective oxide above. The presence of proteins and nucleic acids near the tip results in a decrease in impedance across the sensing electrodes. There are three basic mechanisms behind the electrical response of DNA and protein molecules in solution under an applied alternating electrical field. The first change stems from modulation of the relative permittivity at the interface. The second mechanism is the formation and relaxation of the induced dipole moment. The third mechanism is the tunneling of electrons through the biomolecules. The results presented in this paper can be extended to develop low cost point-of-care diagnostic assays for the clinical setting.

1.
K.
Inoue
,
T.
Arai
, and
M.
Aoyagi
,
Biol. Pharm. Bull.
22
,
210
(
1999
).
2.
B. M.
McDermott
, Jr.
,
A. H.
Rux
,
R. J.
Eisenberg
,
G. H.
Cohen
, and
V. R.
Racaniello
,
J. Biol. Chem.
275
,
23089
23096
(
2000
).
3.
L.
Xing
,
K.
Tjarnlund
,
B.
Lindqvist
,
G. G.
Kaplan
,
D.
Feigelstock
,
R. H.
Cheng
, and
J. M.
Casasnovas
,
EMBO J.
19
,
1207
1216
(
2000
).
4.
B.
Catimel
,
J.
Weinstock
,
M.
Nerrie
,
T.
Domagala
, and
E.
Nice
,
J. Chromatogr. A
869
,
261
273
(
2000
).
5.
S.
Guermazi
,
V.
Regnault
,
Y.
Gorgi
,
K.
Ayed
,
T.
Lecompte
, and
K.
Dellagi
,
Blood Coagul. Fibrinolysis
11
,
491
498
(
2000
).
6.
B. M.
Charalambous
and
I. M.
Feavers
,
FEMS Microbiol. Lett.
191
,
45
50
(
2000
).
7.
H.
Chen
,
A.
Clayton
,
W.
Wang
, and
W.
Sawyer
,
Eur. J. Biochem.
268
,
1659
1669
(
2001
).
8.
J. L.
Elliott
,
J.
Mogridge
, and
R. J.
Collier
,
Biochemistry
39
,
6706
6713
(
2000
).
9.
K.
Uegaki
,
T.
Otomo
,
H.
Sakahira
,
M.
Shimizu
,
N.
Yumoto
,
Y.
Kyogoku
,
S.
Nagata
, and
T.
Yamazaki
,
J. Mol. Biol.
297
,
1121
1128
(
2000
).
10.
O. M.
Andersen
,
L. L.
Christensen
,
P. A.
Christensen
,
E. S.
Sørensen
,
C.
Jacobsen
,
S. K.
Moestrup
,
M.
Etzerodt
, and
H. C.
Thøgersen
,
J. Biol. Chem.
275
,
21017
21024
(
2000
).
11.
J. M.
Holaska
,
B. E.
Black
,
D. C.
Love
,
J. A.
Hanover
,
J.
Leszyk
, and
B. M.
Paschal
,
J. Cell Biol.
152
,
127
140
(
2001
).
12.
M. G.
Achen
,
S.
Roufail
,
T.
Domagala
,
B.
Catimel
,
E. C.
Nice
,
D. M.
Geleick
,
R.
Murphy
,
A. M.
Scott
,
C.
Caesar
, and
T.
Makinen
,
Eur. J. Biochem.
267
,
2505
2515
(
2000
).
13.
T. S.
Jokiranta
,
J.
Hellwage
,
V.
Koistinen
,
P. F.
Zipfel
, and
S.
Meri
,
J. Biol. Chem.
275
(
36
),
27657
27662
(
2000
).
14.
M.
Vogel
,
S.
Miescher
,
S.
Kuhn
,
A. W.
Zürcher
,
M. B.
Stadler
,
C.
Ruf
,
F.
Effenberger
,
F.
Kricek
, and
B. M.
Stadler
,
J. Mol. Biol.
298
,
729
735
(
2000
).
15.
C. D.
Ellson
,
S.
Gobert-Gosse
,
K. E.
Anderson
,
K.
Davidson
,
H.
Erdjument-Bromage
,
P.
Tempst
,
J. W.
Thuring
,
M. A.
Cooper
,
Z.-Y.
Lim
, and
A. B.
Holmes
,
Nat. Cell Biol.
3
,
679
682
(
2001
).
16.
J.-M.
Gaullier
,
E.
Rønning
,
D. J.
Gillooly
, and
H.
Stenmark
,
J. Biol. Chem.
275
,
24595
24600
(
2000
).
17.
V.
Ablamunits
,
O.
Henegariu
,
J. B.
Hansen
,
L.
Opare-Addo
,
P.
Preston-Hurlburt
,
P.
Santamaria
,
T.
Mandrup-Poulsen
, and
K. C.
Herold
,
Diabetes
61
,
145
154
(
2012
).
18.
F. F.
Bier
,
F.
Kleinjung
, and
F. W.
Scheller
,
Sens. Actuators B
38
,
78
82
(
1997
).
19.
K. K.
Jensen
,
H.
Ørum
,
P. E.
Nielsen
, and
B.
Nordén
,
Biochemistry
36
,
5072
5077
(
1997
).
20.
K.
Nakatani
,
S.
Sando
, and
I.
Saito
,
Nat. Biotechnol.
19
,
51
55
(
2001
).
21.
F.
Blaesing
,
C.
Weigel
,
M.
Welzeck
, and
W.
Messer
,
Mol. Microbiol.
36
,
557
569
(
2002
).
22.
D. J.
Hart
,
R. E.
Speight
,
J. M.
Blackburn
,
M. A.
Cooper
, and
J. D.
Sutherland
,
Nucleic Acids Res.
27
,
1063
1069
(
1999
).
23.
A.
Scire
,
F.
Tanfani
,
F.
Saccucci
,
E.
Bertoli
, and
G.
Principato
,
Proteins: Struct., Funct., Bioinf.
41
,
33
39
(
2000
).
24.
P.
Steinrücke
,
U.
Aldinger
,
O.
Hill
,
A.
Hillisch
,
R.
Basch
, and
S.
Diekmann
,
Anal. Biochem.
286
,
26
34
(
2000
).
25.
J.
Sang
,
H.
Du
,
W.
Wang
,
M.
Chu
,
Y.
Wang
,
H.
Li
,
H. A.
Zhang
,
W.
Wu
, and
Z.
Li
,
Biomicrofluidics
7
,
024112
(
2013
).
26.
H.-J.
Koo
and
O. D.
Velev
,
Biomicrofluidics
7
,
031501
(
2013
).
27.
S.
Senapati
,
S.
Basuray
,
Z.
Slouka
,
L.-J.
Cheng
, and
H.-C.
Chang
, in
Microfluidics
(
Springer
,
2011
), pp.
153
169
.
28.
S.
Basuray
,
S.
Senapati
,
A.
Aijian
,
A. R.
Mahon
, and
H.-C.
Chang
,
ACS Nano
3
,
1823
1830
(
2009
).
29.
K.-I.
Chen
,
B.-R.
Li
, and
Y.-T.
Chen
,
Nano Today
6
,
131
154
(
2011
).
30.
E.
Katz
and
I.
Willner
,
Electroanalysis
15
,
913
947
(
2003
).
31.
J.
Hong
,
D. S.
Yoon
,
M.-I.
Park
,
J.
Choi
,
T. S.
Kim
,
G.
Im
,
S.
Kim
,
Y. E.
Pak
, and
K.
No
,
Jpn. J. Appl. Phys., Part 1
43
,
5639
5645
(
2004
).
32.
Y.-S.
Liu
,
P. P.
Banada
,
S.
Bhattacharya
,
A. K.
Bhunia
, and
R.
Bashir
,
Appl. Phys. Lett.
92
,
143902
(
2008
).
33.
P. L.
Hansen
,
R.
Podgornik
, and
V. A.
Parsegian
,
Phys. Rev. E
64
,
021907
(
2001
).
34.
K. S.
Schmitz
,
Macroions in Solution and Colloidal Suspension
(
VCH
,
New York
,
1993
).
35.
S.
Tomić
,
S. D.
Babić
,
T.
Vuletić
,
S.
Krča
,
D.
Ivanković
,
L.
Griparić
, and
R.
Podgornik
,
Phys. Rev. E
75
,
021905
(
2007
).
36.
T. E.
Angelini
,
R.
Golestanian
,
R. H.
Coridan
,
J. C.
Butler
,
A.
Beraud
,
M.
Krisch
,
H.
Sinn
,
K. S.
Schweizer
, and
G. C.
Wong
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
7962
7967
(
2006
).
37.
F.
Bordi
,
C.
Cametti
, and
R.
Colby
,
J. Phys.: Condens. Matter
16
,
R1423
(
2004
).
38.
G.
Jungner
,
I.
Jungner
, and
L.
Allgen
,
Nature
164
,
1009
(
1949
).
39.
L.
Brillouin
,
M.
Kasha
, and
B.
Pullman
, in
Horizons in Biochemistry
(
Academic Press
,
London
,
1962
).
40.
S.
Suhai
and
J.
Ladik
,
Int. J. Quantum Chem.
7
,
547
560
(
1973
).
41.
D.
Dee
and
M.
Baur
,
J. Chem. Phys.
60
,
541
560
(
1974
).
42.
C.
Murphy
,
M.
Arkin
,
Y.
Jenkins
,
N.
Ghatlia
,
S.
Bossmann
,
N.
Turro
, and
J.
Barton
,
Science
262
,
1025
1029
(
1993
).
43.
S.
Priyadarshy
,
S.
Risser
, and
D.
Beratan
,
J. Phys. Chem.
100
,
17678
17682
(
1996
).
44.
S. M.
Risser
,
D. N.
Beratan
, and
T. J.
Meade
,
J. Am. Chem. Soc.
115
,
2508
2510
(
1993
).
45.
46.
K.
Baverstock
and
R.
Cundall
,
Int. J. Rad Appl. Instrum. C
32
(
3
),
553
556
(
1988
).
47.
M.
Arkin
,
E.
Stemp
,
R.
Holmlin
,
J.
Barton
,
A.
Hörmann
,
E.
Olson
, and
P.
Barbara
,
Science (New York, NY
)
273
,
475
(
1996
).
48.
R. E.
Holmlin
,
E. D.
Stemp
, and
J. K.
Barton
,
J. Am. Chem. Soc.
118
,
5236
5244
(
1996
).
49.
S. O.
Kelley
and
J. K.
Barton
,
Chem. Biol.
5
,
413
425
(
1998
).
50.
S. O.
Kelley
,
R. E.
Holmlin
,
E. D.
Stemp
, and
J. K.
Barton
,
J. Am. Chem. Soc.
119
,
9861
9870
(
1997
).
51.
A.
Bakhshi
,
Prog. Biophys. Mol. Biol.
61
,
187
(
1994
).
52.
D. N.
Beratan
,
J. Am. Chem. Soc
108
,
4321
4326
(
1986
).
53.
R.
Esfandyarpour
,
H.
Esfandyarpour
,
M.
Javanmard
,
J. S.
Harris
, and
R. W.
Davis
, “
Microneedle biosensor: A method for direct label-free real time protein detection
,”
Sens. Actuators B: Chem.
177
,
848
855
(
2012
).
54.
R.
Esfandyarpour
,
H.
Esfandyarpour
,
M.
Javanmard
,
J. S.
Harris
, and
R. W.
Davis
,
Electrical Detection of Protein Biomarkers Using Nanoneedle Biosensors
(
Cambridge University Press
,
2012
).
55.
R.
Esfandyarpour
,
M.
Javanmard
,
J. S.
Harris
, and
R. W.
Davis
,
Thin Film Nanoelectronic Probe for Protein Detection
(
Cambridge Univ Press
,
2013
).
56.
R.
Esfandyarpour
,
M.
Javanmard
,
Z.
Koochak
,
J. S.
Harris
, and
R. W.
Davis
, “
Nanoelectronic impedance detection of target cells
,”
Biotechnol. Bioeng.
(in press).
57.
R.
Esfandyarpour
,
H.
Esfandyarpour
,
J. S.
Harris
, and
R. W.
Davis
, “
Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device
,”
Nanotechnology
(in press).
You do not currently have access to this content.