Oscillating electrowetting on dielectrics (EWOD) with coplanar electrodes is investigated in this paper as a way to provide efficient stirring within a drop with biological content. A supporting model inspired from Ko et al. [Appl. Phys. Lett. 94, 194102 (2009)] is proposed allowing to interpret oscillating EWOD-induced drop internal flow as the result of a current streaming along the drop surface deformed by capillary waves. Current streaming behaves essentially as a surface flow generator and the momentum it sustains within the (viscous) drop is even more significant as the surface to volume ratio is small. With the circular electrode pair considered in this paper, oscillating EWOD sustains toroidal vortical flows when the experiments are conducted with aqueous drops in air as ambient phase. But when oil is used as ambient phase, it is demonstrated that the presence of an electrode gap is responsible for a change in drop shape: a pinch-off at the electrode gap yields a peanut-shaped drop and a symmetry break-up of the EWOD-induced flow pattern. Viscosity of oil is also responsible for promoting an efficient damping of the capillary waves which populate the surface of the actuated drop. As a result, the capillary network switches from one standing wave to two superimposed traveling waves of different mechanical energy, provided that actuation frequency is large enough, for instance, as large as the one commonly used in electrowetting applications (f ∼ 500 Hz and beyond). Special emphasis is put on stirring of biological samples. As a typical application, it is demonstrated how beads or cell clusters can be focused under flow either at mid-height of the drop or near the wetting plane, depending on how the nature of the capillary waves is (standing or traveling), and therefore, depending on the actuation frequency (150 Hz–1 KHz).

1.
S.
Ko
,
S.
Lee
, and
K.
Kang
,
Appl. Phys. Lett.
94
,
194102
(
2009
).
2.
V.
Hessel
,
H.
Lowe
, and
F.
Schonfeld
,
Chem. Eng. Sci.
60
,
2479
(
2005
).
3.
B.
Berge
and
J.
Peseux
,
Eur. Phys. J. E
3
,
159
(
2000
).
4.
R.
Hayes
and
B.
Feenstra
,
Nature
425
,
383
(
2003
).
5.
M. G.
Pollack
,
V. K.
Pamula
,
V.
Srinivasan
, and
A. E.
Eckhardt
,
Expert Rev. Mol. Diagn.
11
,
393
(
2011
).
6.
C.
Delattre
,
C. P.
Allier
,
Y.
Fouillet
,
D.
Jary
,
F.
Bottausci
,
D.
Bouvier
,
G.
Delapierre
,
M.
Quinaud
,
A.
Rival
,
L.
Davoust
, and
C.
Peponnet
,
Biosens. Bioelectron.
36
,
230
(
2012
).
7.
R.
Malk
,
A.
Rival
,
Y.
Fouillet
, and
L.
Davoust
,
ASME Conf. Proc.
2010
,
239
.
8.
C.-P.
Lee
,
H.-C.
Chen
, and
M.-F.
Lai
,
Biomicrofluidics
6
,
012814
(
2012
).
9.
R.
Miraghaie
,
J.
Sterling
, and
A.
Nadim
,
NSTI-Nanotech.
2
,
610
(
2006
).
10.
H.
Lee
,
S.
Yun
,
S.
Ko
, and
K.
Kang
,
Biomicrofluidics
3
,
044113
(
2009
).
11.
F.
Mugele
,
A.
Staicu
,
R.
Bakker
, and
D.
van den Ende
,
Lab Chip
11
,
2011
(
2011
).
12.

A sessile drop stays on a dielectric film with a first electrode underneath and a needle electrode above which is put in capillary contact with drop apex.

13.
R.
Malk
,
Ecoulements en gouttes activés par électromouillage
, Ph.D. thesis,
Université de Grenoble
(
2011
).
14.
J.
Oh
,
D.
Legendre
, and
F.
Mugele
,
EPL
98
,
34003
(
2012
).
15.
C.
Picard
and
L.
Davoust
,
Langmuir
23
,
1394
(
2007
).
16.
J.
Theisen
and
L.
Davoust
,
Langmuir
28
,
1041
(
2012
).
17.
L.
Davoust
and
J.
Theisen
, “
Evaporation rate of drop arrays within a digital microfluidic system
,”
Sensors Actuators B
(in press).
18.
R.
Malk
,
Y.
Fouillet
, and
L.
Davoust
,
Sensors Actuators B
154
,
191
(
2011
).
19.

U373B cells are nothing but modified astrocytes commonly used as a control means to identify the cytotoxicity of certain components.

20.
J. R.
Saylor
,
A. J.
Szeri
, and
G. P.
Foulks
,
Exp. Fluids
29
,
509
(
2000
).
21.
See supplementary material at http://dx.doi.org/10.1063/1.4817006 for viewing resonant drop shape oscillations under stroboscopic lighting and for imaging of the streamlines.
22.
J. M.
Oh
,
S.
Ko
, and
K.
Kang
,
Langmuir
24
(
15
),
8379
(
2008
).
23.
H.
Lamb
,
Hydrodynamics
(
Cambridge University Press
,
1932
).
24.
J. B.
Bostwick
and
P. H.
Steen
,
Phys. Fluids
21
,
032108
(
2009
).
25.
G.
Batchelor
,
Introduction to Fluid Mechanics
(
Cambridge University Press
,
2000
).
26.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
(
Springer
,
1979
).
27.
J.
Stuart
,
J. Fluid Mech.
87
,
624
(
1966
).
28.
K.
Kang
,
S. J.
Lee
,
C.
Lee
, and
I. S.
Kang
,
Meas. Sci. Technol.
15
,
1104
(
2004
).
29.
G.
Minor
,
P.
Oshkai
, and
N.
Djilali
,
Meas. Sci. Technol.
18
,
L23
(
2007
).
30.
F.
Mugele
,
J.-C.
Baret
, and
D.
Steinhauser
,
Appl. Phys. Lett.
88
,
204106
(
2006
).
31.
S.
Ko
,
H.
Lee
, and
K.
Kang
,
Langmuir
24
,
1094
(
2008
).
32.
P.
Garcia-Sanchez
,
A.
Ramos
, and
F.
Mugele
,
Phys. Rev. E
81
,
015303
(
2010
).
33.
J. M.
Oh
,
S. H.
Ko
, and
K. H.
Kang
,
Phys. Fluids
22
,
032002
(
2010
).
34.
R.
Malk
,
J.
Theisen
,
Y.
Fouillet
, and
L.
Davoust
,
Microelectron. Eng.
97
,
306
(
2012
).
35.
Common geometry involved in EWOD-based lab-on-a-chips.
36.
D.
Mampallil
,
D.
van den Ende
, and
F.
Mugele
,
Appl. Phys. Lett.
99
,
154102
(
2011
).
37.
U.-C.
Yi
and
C.-J.
Kim
,
Micromech. Microeng.
16
,
2053
(
2006
).
38.
R.
Malk
,
Y.
Fouillet
, and
L.
Davoust
,
Microelectron. Eng.
88
,
1745
(
2011
).

Supplementary Material

You do not currently have access to this content.