An experimental study on isotachophoresis (ITP) in which an emulsion is used as leading electrolyte (LE) is reported. The study aims at giving an overview about the transport and flow phenomena occurring in that context. Generally, it is observed that the oil droplets initially dispersed in the LE are collected at the ITP transition zone and advected along with it. The detailed behavior at the transition zone depends on whether or not surfactants (polyvinylpyrrolidon, PVP) are added to the electrolytes. In a system without surfactants, coalescence is observed between the droplets collected at the ITP transition zone. After having achieved a certain size, the droplets merge with the channel walls, leaving an oil film behind. In systems with PVP, coalescence is largely suppressed and no merging of droplets with the channel walls is observed. Instead, at the ITP transition zone, a droplet agglomerate of increasing size is formed. In the initial stages of the ITP experiments, two counter rotating vortices are formed inside the terminating electrolyte. The vortex formation is qualitatively explained based on a hydrodynamic instability triggered by fluctuations of the number density of oil droplets.

1.
F. M.
Everaerts
,
J. L.
Beckers
, and
T. P.
Verheggen
,
Isotachophoresis: Theory, Instrumentation and Applications
(
Elsevier Scientific Publishing
,
Amsterdam
,
1976
).
2.
Z.
Malá
,
P.
Gebauer
, and
P.
Boček
,
Electrophoresis
34
,
19
(
2013
).
3.
P. A.
Walker
,
M. D.
Morris
,
M. A.
Burns
, and
B. N.
Johnson
,
Anal. Chem.
70
,
3766
(
1998
).
4.
B.
Grass
,
A.
Neyer
,
M.
Johnck
,
D.
Siepe
,
F.
Eisenbeiss
,
G.
Weber
, and
R.
Hergenröder
,
Sens. Actuators B
72
,
249
(
2001
).
5.
E.
Ölvecka
,
M.
Masar
,
D.
Kaniansky
,
M.
Johnck
, and
B.
Stanislawski
,
Electrophoresis
22
,
3347
(
2001
).
6.
H. C.
Cui
,
P.
Dutta
, and
C. F.
Ivory
,
Electrophoresis
28
,
1138
(
2007
).
7.
S. S.
Bahga
,
G. V.
Kaigala
,
M.
Bercovici
, and
J. G.
Santiago
,
Electrophoresis
32
,
563
(
2011
).
8.
K. G. H.
Janssen
,
J.
Li
,
H. T.
Hoang
,
P.
Vulto
,
R. J. B. H. N.
van den Berg
,
H. S.
Overkleeft
,
J. C. T.
Eijkel
,
N. R.
Tas
,
H. J.
van der Linden
, and
T.
Hankemeier
,
Lab Chip
12
,
2888
(
2012
).
9.
H.
Huang
,
F.
Xu
,
Z.
Dai
, and
B.
Lin
,
Electrophoresis
26
,
2254
(
2005
).
10.
B.
Jung
,
R.
Bharadwaj
, and
J. G.
Santiago
,
Anal. Chem.
78
,
2319
(
2006
).
11.
M.
Reza Mohamadi
,
N.
Kaji
,
M.
Tokheshi
, and
Y.
Baba
,
Anal. Chem.
79
,
3667
(
2007
).
12.
C. C.
Lin
,
B. K.
Hsu
, and
S. H.
Chen
,
Electrophoresis
29
,
1228
(
2008
).
13.
K.
Choi
,
A. H. C.
Ng
,
R.
Fobel
, and
A. R.
Wheeler
,
Annu. Rev. Anal. Chem.
5
,
413
(
2012
).
14.
A.
Persat
and
J. G.
Santiago
,
New J. Phys.
11
,
075026
(
2009
).
15.
G.
Goet
,
T.
Baier
, and
S.
Hardt
,
Lab Chip
9
,
3586
(
2009
).
16.
U.
Pyell
,
W.
Bücking
,
C.
Huhn
,
B.
Herrmann
,
A.
Merkoulov
,
J.
Mannhardt
,
H.
Jungclas
, and
T.
Nann
,
Anal. Bioanal. Chem.
395
,
1681
(
2009
).
17.
G.
Goet
,
T.
Baier
, and
S.
Hardt
,
Biomicrofluidics
5
,
014109
(
2011
).
18.
F.
Schönfeld
,
G.
Goet
,
T.
Baier
, and
S.
Hardt
,
Phys. Fluids
21
,
092002
(
2009
).
19.
T.
Baier
,
F.
Schönfeld
, and
S.
Hardt
,
J. Fluid Mech.
682
,
101
(
2011
).
20.
T.
Kaneta
,
T.
Ueda
,
K.
Hata
, and
T.
Imasaka
,
J. Chromatogr. A
1106
,
52
(
2006
).
21.
X.
Huang
,
M. J.
Gordon
, and
R. N.
Zare
,
Anal. Chem.
60
,
1837
(
1988
).
22.
F.
Kohlrausch
,
Ann. Phys.
298
,
209
(
1897
).
23.
T. K.
Khurana
and
J. S.
Santiago
,
Lab Chip
9
,
1377
(
2009
).
You do not currently have access to this content.