We investigate single DNA stretching dynamics in a de-wetting flow over micropillars using Brownian dynamics simulation. The Brownian dynamics simulation is coupled with transient flow field computation through a numerical particle tracking algorithm. The droplet formation on the top of the micropillar during the de-wetting process creates a flow pattern that allows DNA to stretch across the micropillars. It is found that DNA nanowire forms if DNA molecules could extend across the stagnation point inside the connecting water filament before its breakup. It also shows that DNA locates closer to the top wall of the micropillar has higher chance to enter the flow pattern of droplet formation and thus has higher chance to be stretched across the micropillars. Our simulation tool has the potential to become a design tool for DNA manipulation in complex biomicrofluidic devices.

1.
T. T.
Perkins
,
D. E.
Smith
,
R. G.
Larson
, and
S.
Chu
,
Science
268
(
5207
),
83
(
1995
).
2.
T. T.
Perkins
,
D. E.
Smith
, and
S.
Chu
,
Science
276
(
5321
),
2016
(
1997
).
3.
C.-C.
Hsieh
and
T.-H.
Lin
,
Biomicrofluidics
5
(
4
),
044106
(
2011
).
4.
Y.-J.
Juang
,
S.
Wang
,
X.
Hu
, and
L. J.
Lee
,
Phys. Rev. Lett.
93
(
26
),
268105
(
2004
).
5.
D. W.
Trahan
and
P. S.
Dolye
,
Biomicrofluidics
3
(
1
),
012803
(
2009
).
6.
W.-C.
Liao
,
N.
Watari
,
S.
Wang
,
X.
Hu
,
R. G.
Larson
, and
L. J.
Lee
,
Electrophoresis
31
(
16
),
2813
(
2010
).
7.
C.-C.
Hsieh
,
T.-H.
Lin
, and
C.-D.
Huang
,
Biomicrofluidics
6
(
4
),
0440105
(
2012
).
8.
N.
Kaji
,
M.
Ueda
, and
Y.
Baba
,
Biophys. J.
82
(
1
),
335
344
(
2002
).
9.
V.
Namasivayam
,
R. G.
Larson
,
D. T.
Burke
, and
M. A.
Burns
,
Anal. Chem.
74
(
14
),
3378
3385
(
2002
).
10.
H.-Y.
Lin
,
L.-C.
Tsai
,
P.-Y.
Chi
, and
C.-D.
Chen
,
Nanotechnology
16
(
11
),
2738
2742
(
2005
).
11.
D. E.
Smith
and
S.
Chu
,
Science
281
(
5381
),
1335
1340
(
1998
).
12.
D. E.
Smith
,
H. P.
Babcock
, and
S.
Chu
,
Science
283
(
5408
),
1724
1727
(
1999
).
13.
P. K.
Wong
,
Y.-K.
Lee
, and
C.-M.
Ho
,
J. Fluid Mech.
497
,
55
65
(
2003
).
14.
C.-H.
Lee
and
C.-C.
Hsieh
,
Biomicrofluidics
7
(
1
),
014109
(
2013
).
15.
F.
Ren
,
Y.
Zu
,
K. K.
Rajagopalan
, and
S.
Wang
,
Biomicrofluidics
6
(
4
),
044103
(
2012
).
16.
M. D.
Wang
,
H.
Yin
,
R.
Landick
,
J.
Gelles
, and
S. M.
Block
,
Biophys. J.
72
(
3
),
1335
(
1997
).
17.
C.
Bustamante
,
Z.
Byrant
, and
S. B.
Smith
,
Nature
421
(
6921
),
423
427
(
2003
).
18.
N.
Douville
,
D.
Huh
, and
S.
Takayama
,
Anal. Bioanal. Chem.
391
(
7
),
2395
(
2008
).
19.
J.
Tang
,
D. W.
Trahan
, and
P. S.
Doyle
,
Macromolecules
43
(
6
),
3081
(
2010
).
20.
S. F.
Lim
,
A.
Karpusenko
,
J. J.
Sakon
,
J. A.
Hook
,
T. A.
Lamar
, and
R.
Riehn
,
Biomicrofluidics
5
(
3
),
034106
(
2011
).
21.
X.
Michalet
,
R.
Ekong
,
F.
Fougerousse
,
S.
Rousseaux
,
C.
Schurra
,
N.
Hornigold
,
M.
vanSlegtenhorst
,
J.
Wolfe
,
S.
Povey
,
J. S.
Beckmann
, and
A.
Benison
,
Science
277
(
5331
),
1518
(
1997
).
22.
C. A. P.
Petit
and
J. D.
Carbeck
,
Nano Lett.
3
(
8
),
1141
1146
(
2003
).
23.
J. H.
Kim
,
W.-X.
Shi
, and
R. G.
Larson
,
Langmuir
23
(
2
),
755
(
2007
).
24.
J.
Guan
and
L. J.
Lee
,
Proc. Natl. Acad. Sci. U.S.A.
102
(
51
),
18321
(
2005
).
25.
J.
Guan
,
B.
Yu
, and
L. J.
Lee
,
Adv. Mater.
19
(
9
),
1212
(
2007
).
26.
J.
Guan
,
B.
Pouyan
,
O.
Hemminger
,
N.-R.
Chiou
,
W.
Zha
,
M.
Cavanaugh
, and
L. J.
Lee
,
Adv. Mater.
22
(
36
),
3997
(
2010
).
27.
B.
Pouyan
,
A.
Moss
,
W.-C.
Liao
,
B.
Hanslee
,
H. C.
Jung
,
X.
Zhang
,
B.
Yu
,
X.
Wang
,
Y.
Wu
,
L.
Li
,
K.
Gao
,
X.
Hu
,
X.
Zhao
,
O.
Hemminger
,
W.
Lu
,
G. P.
Lafyatis
, and
L. J.
Lee
,
Nature Nanotech.
6
(
11
),
747
(
2011
).
28.
C. H.
Lin
,
J.
Guan
,
S. W.
Chau
,
S. C.
Chen
, and
L. J.
Lee
,
Biomicrofluidics
4
(
3
),
034103
(
2010
).
29.
A. S.
Panwar
and
S.
Kumar
,
J. Chem. Phys.
118
(
2
),
925
(
2003
).
30.
J. M.
Kim
and
P. S.
Doyle
,
J. Chem. Phys.
125
(
7
),
074906
(
2006
).
31.
R.
Duggal
,
P.
Sunthar
, and
J. R.
Prakash
,
J. Rheol.
52
(
6
),
1405
(
2008
).
32.
H.
Xin
,
S.
Wang
, and
L. J.
Lee
,
Phys. Rev. E
79
(
4
),
041911
(
2009
).
33.
S.-L.
Lee
and
W.-C.
Liao
,
Int. J. Heat Mass Transfer
51
(
9-10
),
2433
(
2008
).
34.
S.-L.
Lee
and
W.-B.
Tien
,
Int. J. Heat Mass Transfer
52
(
13-14
),
3000
(
2009
).
35.
S.-L.
Lee
and
C.-F.
Yang
,
Can. J. Chem. Eng.
90
(
3
),
612
(
2012
).
36.
C. W.
Hirt
and
B. D.
Nichols
,
J. Comput. Phys.
39
(
1
),
201
(
1981
).
37.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
,
J. Comput. Phys.
100
(
2
),
335
(
1992
).
38.
J. H.
Ferziger
and
M.
Perić
,
Computational Methods for Fluid Dynamics
, 3rd ed. (
Springer
,
2001
).
39.
K. W.
Morton
and
M. J.
Baines
,
Numerical Methods for Fluid Dynamics
, 1st ed. (
Academic Press
,
1983
).
40.
R. M.
Jendrejack
,
J. J.
de Pablo
, and
M. D.
Graham
,
J. Chem. Phys.
116
(
17
),
7752
7759
(
2002
).
41.
C.-C.
Hsieh
,
L.
Li
, and
R. G.
Larson
,
J. Non-Newtonian Fluid Mech.
113
(
2-3
),
147
191
(
2003
).
42.
R. G.
Larson
,
H.
Hu
,
D. E.
Smith
, and
S.
Chu
,
J. Rheology
43
(
2
),
267
304
(
1999
).
43.
J. S.
Hur
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
,
J. Rheology
44
(
4
),
713
742
(
2000
).
44.
J. S.
Hur
,
E. S. G.
Shaqfeh
,
H. P.
Babcock
,
D. E.
Smith
, and
S.
Chu
,
J. Rheol.
45
(
2
),
421
450
(
2001
).
45.
C. M.
Schroeder
,
E. S. G.
Shaqfeh
, and
S.
Chu
,
Macromolecules
37
(
24
),
9242
9256
(
2004
).
46.
J. F.
Marko
and
E. D.
Sigga
,
Macromolecules
28
(
26
),
8759
(
1995
).
47.
C. M.
Schroeder
,
R. E.
Teixeira
,
E. S. G.
Shaqfeh
, and
S.
Chu
,
Macromolecules
38
(
5
),
1967
(
2005
).
48.
X.
Hu
, Ph.D. dissertation,
The Ohio State University
,
2006
.
49.
D.
Heyes
and
J.
Melrose
,
J. Non-Newtonian Fluid Mech.
46
(
1
),
1
(
1993
).
50.
J. M.
Kim
and
P. S.
Doyle
,
Lab Chip
7
(
2
),
213
225
(
2007
).
51.
Y.-L.
Chen
,
M. D.
Graham
,
J. J.
de Pablo
,
G. C.
Randall
,
M.
Gupta
, and
P. S.
Doyle
,
Phys. Rev. E
70
(
6
),
060901
(
2004
).
52.

Our dimensionless relaxation will be 0.48 after transformed to the bead-spring model used in Ref. 3 where 19 beads were used for a 20.5 μm long DNA and their dimensionless relaxation time is 0.52. During the transformation, we use ξDNA = Nbξ where ξDNA the DNA drag coefficient in bulk solution and Nb the number of beads. The difference may result from the difference in contour length (19.8 μm in this study).

53.
S.-F.
Hsieh
,
C.-P.
Chang
,
Y.-J.
Juang
, and
H.-H.
Wei
,
Appl. Phys. Lett.
93
(
8
),
084103
(
2008
).
54.
G.
Juarez
and
P. E.
Arratia
,
Soft Matter
7
(
19
),
9444
9452
(
2011
).
55.
S.-W.
Hu
,
Y.-J.
Sheng
, and
H.-K.
Tsao
,
Biomicrofluidics
6
(
2
),
024130
(
2012
).
56.
M.
Nakano
,
H.
Kurita
,
J.
Komatsu
,
A.
Mizuno
, and
S.
Katsura
,
Appl. Phys. Lett.
89
(
13
),
133901
(
2006
).
57.
M.
Ichikawa
,
H.
Ichikawa
,
K.
Yoshikawa
, and
Y.
Kimura
,
Phys. Rev. Lett.
99
(
14
),
148104
(
2007
).
You do not currently have access to this content.