We report how cell rheology measurements can be performed by monitoring the deformation of a cell in a microfluidic constriction, provided that friction and fluid leaks effects between the cell and the walls of the microchannels are correctly taken into account. Indeed, the mismatch between the rounded shapes of cells and the angular cross-section of standard microfluidic channels hampers efficient obstruction of the channel by an incoming cell. Moreover, friction forces between a cell and channels walls have never been characterized. Both effects impede a quantitative determination of forces experienced by cells in a constriction. Our study is based on a new microfluidic device composed of two successive constrictions, combined with optical interference microscopy measurements to characterize the contact zone between the cell and the walls of the channel. A cell squeezed in a first constriction obstructs most of the channel cross-section, which strongly limits leaks around cells. The rheological properties of the cell are subsequently probed during its entry in a second narrower constriction. The pressure force is determined from the pressure drop across the device, the cell velocity, and the width of the gutters formed between the cell and the corners of the channel. The additional friction force, which has never been analyzed for moving and constrained cells before, is found to involve both hydrodynamic lubrication and surface forces. This friction results in the existence of a threshold for moving the cells and leads to a non-linear behavior at low velocity. The friction force can nevertheless be assessed in the linear regime. Finally, an apparent viscosity of single cells can be estimated from a numerical prediction of the viscous dissipation induced by a small step in the channel. A preliminary application of our method yields an apparent loss modulus on the order of 100 Pa s for leukocytes THP-1 cells, in agreement with the literature data.

1.
M. R.
Looney
,
E. E.
Thornton
,
D.
Sen
,
W. J.
Lamm
,
R. W.
Glenny
, and
M.
Krummel
,
Nat. Methods
8
,
91
96
(
2011
).
2.
Y.
Zheng
and
Y.
Sun
,
Micro Nano Lett.
6
,
327
331
(
2011
).
3.
H. W.
Hou
,
W. C.
Lee
,
M. C.
Leong
,
S.
Sonam
,
S. R. K.
Vedula
, and
C. T.
Lim
,
Cell. Mol. Bioeng.
4
,
591
602
(
2011
).
4.
M.
Nishino
,
H.
Tanaka
,
H.
Ogura
,
Y.
Inoue
,
T.
Koh
,
K.
Fujita
, and
H.
Sugimoto
,
J. Trauma
59
,
1425
1431
(
2005
).
5.
S.
Gabriele
,
A. M.
Benoliel
,
P.
Bongrand
, and
O.
Theodoly
,
Biophys. J.
96
,
4308
4318
(
2009
).
6.
P.
Preira
,
T.
Leoni
,
M.-P.
Valignat
,
A.
Lellouch
,
P.
Robert
,
J.-M.
Forel
,
L.
Papazian
,
G.
Dumenil
,
P.
Bongrand
, and
O.
Théodoly
,
Int. J. Nanotechnol.
9
,
529
547
(
2012
).
7.
M. J.
Rosenbluth
,
W. A.
Lam
, and
D. A.
Fletcher
,
Lab Chip
8
,
1062
1070
(
2008
).
8.
K. C.
Chaw
,
M.
Manimaran
,
E. H.
Francis
, and
S.
Swaminathan
,
Microvasc. Res.
72
,
153
160
(
2006
).
9.
B.
Yap
and
R. D.
Kamm
,
J. Appl. Physiol.
98
,
1930
1939
(
2005
).
10.
J. P.
Shelby
,
J.
White
,
K.
Ganesan
,
P. K.
Rathod
, and
D. T.
Chiu
,
Proc. Natl. Acad. Sci. U.S.A
100
,
14618
14622
(
2003
).
11.
R. J.
Hawkins
,
M.
Piel
,
G.
Faure-Andre
,
A. M.
Lennon-Dumenil
,
J. F.
Joanny
,
J.
Prost
, and
R.
Voituriez
,
Phys. Rev. Lett.
102
,
058103
(
2009
).
12.
J.
Jacobelli
,
R. S.
Friedman
,
M. A.
Conti
,
A. M.
Lennon-Dumenil
,
M.
Piel
,
C. M.
Sorensen
,
R. S.
Adelstein
, and
M. F.
Krummel
,
Nat. Immun.
11
,
953
961
(
2010
).
13.
K. C.
Chaw
,
M.
Manimaran
,
F. E. H.
Tay
, and
S.
Swaminathan
,
J. Phys.: Conf. Ser.
34
,
747
751
(
2006
).
14.
A. D.
Van der Meer
,
A. A.
Poot
,
M. H. G.
Duits
,
J.
Feijen
, and
I.
Vermes
,
J. Biomed. Biotechnol.
2009
,
1
10
.
15.
E. W. K.
Young
and
C. A.
Simmons
,
Lab Chip
10
,
143
160
(
2010
).
16.
J. W.
Song
,
W.
Gu
,
N.
Futai
,
K. A.
Warner
,
J. E.
Nor
, and
S.
Takayama
,
Anal. Chem.
77
,
3993
3999
(
2005
).
17.
E.
Tkachenko
,
E.
Gutierrez
,
M. H.
Ginsberg
, and
A.
Groisman
,
Lab Chip
9
,
1085
1095
(
2009
).
18.
O. F.
Khan
and
M. V.
Sefton
,
Biomed. Microdevices
13
,
69
87
(
2011
).
19.
A. D.
Van der Meer
,
A. A.
Poot
,
J.
Feijen
, and
I.
Vermes
,
Biomicrofluidics
4
,
1
10
(
2010
).
20.
J. W.
Song
,
S. P.
Cavnar
,
A. C.
Walker
,
K. E.
Luker
,
M.
Gupta
,
Y. C.
Tung
,
G. D.
Luker
, and
S.
Takayama
,
PLoS ONE
4
(
6
),
e5756
(
2009
).
21.
J. B.
Shao
,
L.
Wu
,
J. Z.
Wu
,
Y. H.
Zheng
,
H.
Zhao
,
Q. H.
Jin
, and
J. L.
Zhao
,
Lab Chip
9
,
3118
3125
(
2009
).
22.
S. M.
McFaul
,
B. K.
Lin
, and
H.
Ma
,
Lab Chip
12
,
2369
2376
(
2012
).
23.
S. A.
Vanapalli
,
M. H. G.
Duits
, and
F.
Mugele
,
Biomicrofluidics
3
,
012006
(
2009
).
24.
P.
Preira
,
V.
Grandné
,
J.-M.
Forel
,
S.
Gabriele
,
M.
Camara
, and
O.
Theodoly
,
Lab Chip
13
,
161
170
(
2013
).
25.
D.
Huh
,
B. D.
Matthews
,
A.
Mammoto
,
M.
Montoya-Zavala
,
H.
Yuan Hsin
, and
D. E.
Ingber
,
Science
328
,
1662
1668
(
2010
).
26.
A.
Gunther
,
S.
Yasotharan
,
A.
Vagaon
,
C.
Lochovsky
,
S.
Pinto
,
J.
Yang
,
C.
Lau
,
J.
Voigtlaender-Bolz
, and
S.-S.
Bolz
,
Lab Chip
10
,
2341
2349
(
2010
).
27.
M.
Abkarian
,
M.
Faivre
, and
H. A.
Stone
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
538
542
(
2006
).
28.
K.
Tsukada
,
E.
Sekisuka
,
C.
Oshio
, and
H.
Minamitani
,
Microvasc. Res.
61
,
231
239
(
2001
).
29.
R. P.
Rand
and
A. C.
Burton
,
Biophys. J.
4
,
115
135
(
1964
).
30.
E. A.
Evans
,
Biophys. J.
13
,
941
954
(
1973
).
31.
S.
Chien
,
Blood Cells
3
,
71
99
(
1977
).
32.
M. A.
Lichtman
,
J. Clin. Invest.
52
,
350
358
(
1973
).
33.
M. E.
Miller
and
K. A.
Myers
,
J. Reticuloendothel. Soc.
18
,
337
345
(
1975
).
34.
G. W.
Schmid-Schonbein
,
Y. Y.
Shih
, and
S.
Chien
,
Blood
56
,
866
875
(
1980
).
35.
G. W.
Schmid-Schonbein
,
K.-L.
Paul Sung
,
H.
Tozere
,
R.
Skalak
, and
S.
Chien
,
Biophys. J.
36
,
243
256
(
1981
).
36.
E.
Evans
and
B.
Kukan
,
Blood
64
,
1028
1035
(
1984
); available at http://bloodjournal.hematologylibrary.org/content/64/5/1028.abstract%7d.
37.
D.
Needham
and
R. M.
Hochmuth
,
J. Biomech. Eng.
112
,
269
276
(
1990
).
38.
F.
Richelme
,
A. M.
Benoliel
, and
P.
Bongrand
,
Cell Motil. Cytoskeleton
45
(
2
),
93
105
(
2000
).
39.
M.
Balland
,
N.
Desprat
,
D.
Icard
,
S.
Fereol
,
A.
Asnacios
,
J.
Browaeys
,
S.
Henon
, and
F.
Gallet
,
Phys. Rev. E
74
,
021911
(
2006
).
40.
T.
Herricks
,
M.
Antia
, and
P. K.
Rathod
,
Cell. Microbiol.
11
,
1340
1353
(
2009
).
41.
S. C.
Gifford
,
J.
Derganc
,
S. S.
Shevkoplyas
,
T.
Yoshida
, and
M. W.
Bitensky
,
Br. J. Haematol.
135
,
395
404
(
2006
).
42.
Z. S.
Khan
and
S. A.
Vanapalli
,
Biomicrofluidics
7
,
011806
(
2013
).
43.
E.
Kang
,
S.-J.
Shin
,
K. H.
Lee
, and
S.-H.
Lee
,
Lab Chip
10
,
1856
1861
(
2010
).
44.
L. K.
Fiddes
,
N.
Raz
,
S.
Srigunapalan
,
E.
Tumarkan
,
C. A.
Simmons
,
A. R.
Wheeler
, and
E.
Kumacheva
,
Biomaterials
31
,
3459
3464
(
2010
).
45.
C.
Zhou
,
P.
Yue
, and
J.
Feng
,
Ann. Biomed. Eng.
35
,
776
780
(
2007
).
46.
F. Y.
Leong
,
Q.
Li
,
C. T.
Lim
, and
K. H.
Chiam
,
Biomech. Model. Mechanobiol.
10
,
755
766
(
2011
).
47.
Q.
Guo
,
S.
Park
, and
H. S.
Ma
,
Lab Chip
12
,
2687
2695
(
2012
).
48.
N.
Walter
,
A.
Micoulet
,
T.
Seufferlein
, and
J. P.
Spatz
,
BioInterphases
6
,
117
125
(
2011
).
49.
Y.
Xia
and
G. M.
Whitesides
,
Angew. Chem.
37
,
550
575
(
1998
).
50.
S.
Tsuchiya
,
M.
Yamabe
,
Y.
Yamaguchi
,
Y.
Kobayashi
,
T. Konno
,
and K. Tada. Int. J. Cancer
26
,
171
176
(
1980
).
51.
J.
Vitte
,
A.-M.
Benoliel
,
P.
Eymeric
,
P.
Bongrand
, and
A.
Pierres
,
Biophys. J.
86
,
4059
4074
(
2004
).
52.
A.
Edelstein
,
N.
Amodaj
,
K.
Hoover
,
R.
Vale
, and
N.
Stuurman
, “
Computer control of microscopes using μmanager
,”
Curr. Protoc. Mol. Biol.
92
,
14
20
1
14
20
17
(
2010
).
53.
O.
Theodoly
,
Z.-H.
Huang
, and
M.-P.
Valignat
,
Langmuir
26
,
1940
1948
(
2010
).
54.
S.
Gabriele
,
M.
Versaevel
,
P.
Preira
, and
O.
Theodoly
,
Lab Chip
10
,
1459
1467
(
2010
).
55.
M.
Bathe
,
A.
Shirai
,
C. M.
Doerschuk
, and
R. D.
Kamm
,
Biophys. J.
83
,
1917
1933
(
2002
).
56.
P.
Preira
,
J.-M.
Forel
,
P.
Robert
,
F.
Xeridat
,
O.
Brissy
,
P.
Bongrand
,
L.
Papazian
, and
O.
Theodoly
, “Leukocyte stiffening property of plasma in early ARDS revealed by a microfluidic single-cell study- role of cytokines and protection with antibodies” (unpublished).
57.
V.
Vitkova
,
M.
Mader
, and
T.
Podgorski
,
Europhys. Lett.
68
,
398
404
(
2004
).
58.
C. N.
Baroud
,
F.
Gallaire
, and
R.
Dangla
,
Lab Chip
10
,
2032
2045
(
2010
).
59.
J.
Bico
and
D.
Quéré
,
J. Colloid Interface Sci.
247
,
162
166
(
2002
).
60.
W. B.
Kolb
and
R.
Cerro
,
J. Colloid Interface Sci.
159
,
302
311
(
1993
).
61.
T. C.
Thulasidas
,
M. A.
Abraham
, and
R. L.
Cerro
, “
Bubble-train flow in capillaries of circular and square cross section
,”
Chem. Eng. Sci.
50
,
183
199
(
1995
).
62.
T. C.
Ransohoff
and
C. J.
Radke
,
J. Colloid Interface Sci.
121
,
392
401
(
1988
).
63.
H.
Wong
,
C. J.
Radke
, and
S.
Morris
,
J. Fluid Mech.
292
,
71
94
(
1995
).
64.
H.
Wong
,
C. J.
Radke
, and
S.
Morris
,
J. Fluid Mech.
292
,
95
110
(
1995
).
65.
S. A.
Vanapalli
,
A. G.
Banpurkar
,
D.
van den Ende
,
M. H. G.
Duits
, and
F.
Mugele
,
Lab Chip
9
,
982
990
(
2009
).
66.
M.
Dong
and
I.
Chatziz
,
J. Colloid Interface Sci.
172
,
278
288
(
1995
).
67.
R. M.
Hochmuth
,
J. Biomech.
33
,
15
22
(
2000
).
68.
J.
Bico
and
D.
Quéré
,
J. Fluid Mech.
467
,
101
127
(
2002
).
69.
F. P.
Bretherton
,
J. Fluid Mech.
10
,
166
188
(
1961
).
70.
E. R.
Damiano
,
Microvasc. Res.
55
,
77
91
(
1998
).
71.
A.
Yeung
and
E.
Evans
,
Biophys. J.
56
,
139
149
(
1989
).
72.
F.
Richelme
,
A. M.
Benoliel
, and
P.
Bongrand
,
Exp. Biol. Online
2
(
5
),
1
(
1997
).
73.
X.
Trepat
,
D.
Linhong
,
A. S.
An
,
D.
Navajas
,
D. J.
Tschumperlin
,
W. T.
Gerthoffer
,
J. P.
Butler
, and
J. J.
Fredberg
,
Nature
447
,
592
595
(
2007
).
74.
B.
Fabry
,
G. N.
Maksym
,
J P.
.
Butler
,
M.
Glogauer
,
D.
Navajas
, and
J.
Fredberg
,
Phys. Rev. Lett.
87
,
148102
(
2001
).
75.
A.
Ducret
,
M. P.
Valignat
,
F.
Mouhamar
,
T.
Mignot
, and
O.
Theodoly
,
Proc. Natl. Acad. Sci. U.S.A.
109
(
25
),
10036
10041
(
2012
).
You do not currently have access to this content.