The instrument described here is an all-electronic dielectrophoresis (DEP) cytometer sensitive to changes in polarizability of single cells. The important novel feature of this work is the differential electrode array that allows independent detection and actuation of single cells within a short section (300μm) of the microfluidic channel. DEP actuation modifies the altitude of the cells flowing between two altitude detection sites in proportion to cell polarizability; changes in altitude smaller than 0.25 μm can be detected electronically. Analysis of individual experimental signatures allows us to make a simple connection between the Clausius-Mossotti factor (CMF) and the amount of vertical cell deflection during actuation. This results in an all-electronic, label-free differential detector that monitors changes in physiological properties of the living cells and can be fully automated and miniaturized in order to be used in various online and offline probes and point-of-care medical applications. High sensitivity of the DEP cytometer facilitates observations of delicate changes in cell polarization that occur at the onset of apoptosis. We illustrate the application of this concept on a population of Chinese hamster ovary (CHO) cells that were followed in their rapid transition from a healthy viable to an early apoptotic state. DEP cytometer viability estimates closely match an Annexin V assay (an early apoptosis marker) on the same population of cells.

1.
L. A.
Flanagan
 et al,
Stem Cells
26
,
656
(
2008
).
2.
P. R.
Gascoyne
,
J.
Noshari
,
T. J.
Anderson
, and
F. F.
Becker
,
Electrophoresis
30
,
1388
(
2009
).
3.
4.
R.
Pethig
,
Biomicrofluidics
4
,
022811
(
2010
).
5.
N.
Demierre
,
T.
Braschler
,
R.
Muller
, and
P.
Renaud
,
Sens. Actuators B
132
,
388
(
2008
).
6.
Y.
Huang
,
R.
Holzel
,
R.
Pethig
, and
X.-B.
Wang
,
Phys. Med. Biol.
37
,
1499
(
1992
).
7.
S.
Patel
 et al,
Biomicrofluidics
6
,
034102
(
2012
).
8.
M.
Toner
and
D.
Irimia
,
Annu. Rev. Biomed. Eng.
7
,
77
(
2005
).
10.
S. K.
Srivastava
,
P. R.
Daggolu
,
S. C.
Burgess
, and
A. R.
Minerick
,
Electrophoresis
29
,
5033
(
2008
).
11.
F. F.
Becker
 et al,
Proc. Natl. Acad. Sci. U.S.A.
92
,
860
(
1995
).
12.
P. R. C.
Gascoyne
,
X.-B.
Wang
,
Y.
Huang
, and
F. F.
Becker
,
IEEE Trans. Indus. Appl.
33
,
670
(
1997
).
13.
D. R.
Albrecht
,
G. H.
Underhill
,
T. B.
Wassermann
,
R. L.
Sah
, and
S. N.
Bhatia
,
Nature Methods
3
,
369
(
2006
).
14.
R.
Pethig
,
A.
Menachery
,
S.
Pells
, and
P. D.
Sousa
,
J. Biomed. Biotechnol.
2010
,
182581
(
2010
).
15.
J.
Vykoukal
,
D. M.
Vykoukal
,
S.
Freyberg
,
E. U.
Alt
, and
P. R.
Gascoyne
,
Lab Chip
8
,
1386
(
2008
).
16.
F. H.
Labeed
,
H. M.
Coley
, and
M. P.
Hughes
,
Biochim. Biophys. Acta
1760
,
922
(
2006
).
17.
L.
Duncan
 et al,
Phys. Med. Biol.
53
,
N1
(
2008
).
18.
H. M.
Coley
,
F. H.
Labeed
,
H.
Thomas
, and
M. P.
Hughes
,
Biochim. Biophys. Acta
1770
,
601
(
2007
).
19.
B. F.
Brehm-Stecher
and
E. A.
Johnson
,
Microbiol. Mol. Biol. Rev.
68
,
538
(
2004
).
20.
K.
Pantel
and
R. H.
Brackenhoff
,
Nat. Rev.
4
,
448
(
2004
).
21.
22.
D.
Holmes
and
H.
Morgan
,
Anal. Chem.
82
,
1455
(
2010
).
23.
S. L.
Stott
 et al,
Proc. Natl. Acad. Sci. U.S.A.
107
,
18392
(
2010
).
24.
M.-T.
Wei
,
J.
Junio
, and
H. D.
Ou-Yang
,
Biomicrofluidics
3
,
012003
(
2009
).
25.
S. A.
Vanapalli
,
M. H. G.
Duits
, and
F.
Mugele
,
Biomicrofluidics
3
,
012006
(
2009
).
26.
R. L.
Gundry
,
K. R.
Boheler
,
J. E.
Van Eyk
, and
B.
Wollscheid
,
Proteomics
2
,
892
(
2008
).
27.
I.-F.
Cheng
,
H.-C.
Chang
,
D.
Hou
, and
H.-C.
Chang
,
Biomicrofluidics
1
,
021503
(
2007
).
28.
V.
Gupta
 et al,
Biomicrofluidics
6
,
024133
(
2012
).
29.
M.
Muratore
,
V.
Srsen
,
M.
Waterfal
,
A.
Downes
, and
R.
Pethig
,
Biomicrofluidics
6
,
034113
(
2012
).
30.
W. H.
Coulter
, U.S. patent 2,656,508 (
20 October 1953
).
31.
D. K.
Wood
,
S. H.
Oh
,
S. H.
Lee
,
H. T.
Soh
, and
A. N.
Cleland
,
Appl. Phys. Lett.
87
,
184106
(
2005
).
32.
D. K.
Wood
,
M. V.
Requa
, and
A. N.
Cleland
,
Rev. Sci. Instrum.
78
,
104301
(
2007
).
33.
Y.
Wu
,
J. D.
Benson
,
J. K.
Critser
, and
M.
Almasri
,
J. Micromech. Microeng.
20
,
085035
(
2010
).
34.
G.
Medoro
 et al,
IEEE Sens. J.
3
,
317
(
2003
).
35.
H.
Park
,
D.
Kim
, and
K.-S.
Yun
,
Sens. Actuators B
150
,
167
173
(
2010
).
36.
M. D.
Jacobson
and
N. J.
McCarthy
,
Apoptosis
(
Oxford University Press
,
2002
).
37.
B.
Alberts
 et al,
Molecular Biology of the Cell
, 5th ed. (
Garland Science/Taylor & Francis, distributor
,
New York/London
,
2008
).
38.
J. F. M.
Hughes
,
C. D.
Bortner
,
G. D.
Purdy
, and
J. A.
Cidlowski
,
J. Biol. Chem.
272
,
30576
(
1997
).
39.
C. D.
Bortner
and
J. A.
Cidlowski
,
J. Biol. Chem.
278
,
39176
(
2003
).
40.
G. H.
Markx
and
C. L.
Davey
,
Enzyme Microb. Tech.
25
,
161
(
1999
).
41.
M.
Nikolic-Jaric
 et al,
Biomicrofluidics
3
,
034103
(
2009
).
42.
M.
Nikolic-Jaric
 et al,
Biomicrofluidics
6
,
024117
(
2012
).
43.
T. B.
Jones
,
Electromechanics of Particles
(
Cambridge University Press
,
1995
).
44.
M.
Nikolic-Jaric
,
G.
Ferrier
,
D.
Thomson
,
G.
Bridges
, and
M.
Freeman
,
Phys. Rev. E
84
,
011922
(
2011
).
45.
T.
Honegger
,
K.
Berton
,
E.
Picard
, and
D.
Peyrade
,
Appl. Phys. Lett.
98
,
181906
(
2011
).
46.
G. A.
Ferrier
,
S. F.
Romanuik
,
D. J.
Thomson
,
G. E.
Bridges
, and
M. R.
Freeman
,
Lab Chip
9
,
3406
(
2009
).
47.
Y.
Huang
,
X. B.
Wang
,
F. F.
Becker
, and
P. R. C.
Gascoyne
,
Biophys. J.
73
,
1118
(
1997
).
48.
G. H.
Markx
,
J.
Rousselet
, and
R.
Pethig
,
J. Liquid Chromatogr. Relat. Technol.
20
,
2857
(
1997
).
49.
C. F.
Opel
,
J.
Li
, and
A.
Amanullah
,
Biotechnol. Prog.
26
,
1187
(
2010
).
50.
I.
Vermes
,
C.
Haanen
,
H.
Steffens-Nakken
, and
C.
Reutelingsperger
,
J. Immunol. Methods
184
,
39
(
1995
).
51.
X.
Wang
,
F. F.
Becker
, and
P. R.
Gascoyne
,
Biochim. Biophys. Acta
1564
,
412
(
2002
).
52.
R.
Pethig
and
M.
Talary
,
IET Nanobiotechnol.
1
,
2
(
2007
).
You do not currently have access to this content.