In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications.

1.
D. J.
Laser
and
J. G.
Santiago
,
J. Micromech. Microeng.
14
,
35
(
2004
).
2.
C.-C.
Hong
,
J.-W.
Choi
, and
C. H.
Ahn
,
J. Micromech. Microeng.
17
,
410
(
2007
).
3.
R. B.
Fair
,
Microfluid Nanofluid
3
,
245
(
2007
).
4.
S. M.
Langelier
,
D. S.
Chang
,
R. I.
Zeitoun
, and
M. A.
Burns
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
12617
(
2009
).
5.
R.
Gorkin
,
J.
Park
,
J.
Siegrist
,
M.
Amasia
,
B. S.
Lee
,
J.
Park
,
J.
Kim
,
H.
Kim
,
M.
Madou
, and
Y.
Cho
,
Lab Chip
10
,
1758
(
2010
).
6.
G. M.
Walker
and
D. J.
Beebe
,
Lab Chip
2
,
131
(
2002
).
7.
M.
Zimmermann
,
H.
Schmid
,
P.
Hunziker
, and
E.
Delamarche
,
Lab Chip
7
,
119
(
2007
).
8.
N. S.
Lynn
and
D. S.
Dandy
,
Lab Chip
9
,
3422
(
2009
).
9.
D. Y.
Liang
,
A. M.
Tentori
,
I. K.
Dimov
, and
L. P.
Lee
,
Biomicrofluidics
5
,
024108
(
2011
).
10.
I. K.
Dimov
,
L.
Basabe-Desmonts
,
J. L.
Garcia-Cordero
,
B. M.
Ross
,
A. J.
Ricco
, and
L. P.
Lee
,
Lab Chip
11
,
845
(
2011
).
11.
L. A.
Richards
,
J. Appl. Phys.
1
,
318
(
1931
).
12.
T.
Gillespie
,
J. Colloid Sci.
14
,
123
(
1959
).
13.
H.
Fujita
,
J. Phys. Chem.
56
,
625
(
1952
).
14.
A.
Marmur
,
J. Colloid Interface Sci.
124
,
301
(
1988
).
15.
D.
Danino
and
A.
Marmur
,
J. Colloid Interface Sci.
166
,
245
(
1994
).
16.
M.
Conrath
,
N.
Fries
,
M.
Zhang
, and
M. E.
Dreyer
,
Transp. Porous Media
84
,
109
(
2010
).
17.
A.
Medina
,
C.
Pérez-Rosales
,
A.
Pineda
, and
F. J.
Higuera
,
Rev. Mex. Fis.
47
,
537
(
2001
).
18.
S.
Mendez
,
E. M.
Fenton
,
G. R.
Gallegos
,
D. N.
Petsev
,
S. S.
Sibbett
,
H. A.
Stone
,
Y.
Zhang
, and
G. P.
López
,
Langmuir
26
,
1380
(
2010
).
19.
E.
Fu
,
S. A.
Ramsey
,
P.
Kauffman
,
B.
Lutz
, and
P.
Yager
,
Microfluid Nanofluid.
10
,
29
(
2011
).
20.
A.
Martinez
,
S.
Phillips
,
M.
Butte
, and
G.
Whitesides
,
Angew. Chem., Int. Ed.
46
,
1318
(
2007
).
21.
A. W.
Martinez
,
S. T.
Phillips
, and
G. M.
Whitesides
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
19606
(
2008
).
22.
A. W.
Martinez
,
S. T.
Phillips
,
G. M.
Whitesides
, and
E.
Carrilho
,
Anal. Chem.
82
,
3
(
2010
).
23.
R.
Derda
,
A.
Laromaine
,
A.
Mammoto
,
S. K. Y.
Tang
,
T.
Mammoto
,
D. E.
Ingber
, and
G. M.
Whitesides
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
18457
(
2009
).
24.
C.
Cheng
,
A. W.
Martinez
,
J.
Gong
,
C. R.
Mace
,
S. T.
Phillips
,
E.
Carrilho
,
K. A.
Mirka
, and
G. M.
Whitesides
,
Angew. Chem., Int. Ed.
49
,
4771
(
2010
).
25.
Z.
Nie
,
C. A.
Nijhuis
,
J.
Gong
,
X.
Chen
,
A.
Kumachev
,
A. W.
Martinez
,
M.
Narovlyansky
, and
G. M.
Whitesides
,
Lab Chip
10
,
477
(
2010
).
26.
D. A.
Bruzewicz
,
M.
Reches
, and
G. M.
Whitesides
,
Anal. Chem.
80
,
3387
(
2008
).
27.
A. W.
Martinez
,
S. T.
Phillips
,
B. J.
Wiley
,
M.
Gupta
, and
G. M.
Whitesides
,
Lab Chip
8
,
2146
(
2008
).
28.
E.
Carrilho
,
A. W.
Martinez
, and
G. M.
Whitesides
,
Anal. Chem.
81
,
7091
(
2009
).
29.
X.
Li
,
D. R.
Ballerini
, and
W.
Shen
,
Biomicrofluidics
6
,
011301
(
2012
).
30.
T.
Songjaroen
,
W.
Dungchai
,
O.
Chailapakul
,
C. S.
Henry
, and
W.
Laiwattanapaisal
,
Lab Chip
12
,
3392
(
2012
).
31.
J.
Greer
,
S. O.
Sundberg
,
C. T.
Wittwer
, and
B. K.
Gale
,
J. Micromech. Microeng.
17
,
2407
(
2007
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4790819 for the detailed fabrication process; the approximation of total pressure P1 and outlet port pressure P2; the approximation of P3 in a paper pump; details of the theoretical calculation measurement; methods for pumping volume.
33.
J.
Berthier
and
J.
Ramsden
,
Micro-Drops and Digital Microfluidics
(
William Andrew Publishing
,
Norwich, NY
,
2008
), pp.
7
73
.
34.
A.
Borhan
and
K. K.
Rungta
,
J. Colloid Interface Sci.
158
,
403
(
1993
).
35.
Harvard Apparatus
,
Harvard Apparatus Pumps Catalog
(
Harvard Apparatus
,
Holliston, Massachusetts
,
2013
), p.
13
.
36.
Thermo Scientific
,
Good Laboratory Pipetting Guide
(
Thermo Scientific
,
2010
), p.
21
.
37.
Harvard Apparatus
,
Harvard Apparatus Pumps Catalog
(
Harvard Apparatus
,
Holliston, Massachusetts
,
2012
), p.
4
.
38.
M. M.
Gong
,
B. D.
MacDonald
,
T. V.
Nguyen
, and
D.
Sinton
,
Biomicrofluidics
6
,
044102
(
2012
).
39.
Harvard Apparatus
,
Pump 11 Elite & Pump 11 Pico Plus Elite User's Manual
(
Harvard Apparatus
,
Holliston, Massachusetts
,
2012
), p.
8
.
40.
R.
Burton-Opitz
and
R.
Dinegar
,
Am. J. Physiol.
47
,
220
(
1918
).
41.
R.
Rosencranz
and
S. A.
Bogen
,
Am. J. Clin. Pathol.
125
(
Suppl 1
),
S78
(
2006
).
42.
E. W.
Merrill
,
Physiol Rev.
49
,
863
(
1969
).
43.
D. M.
Eckmann
,
S.
Bowers
,
M.
Stecker
, and
A. T.
Cheung
,
Anesth. Analg.
91
,
539
(
2000
).
44.
Z.
Xu
,
C.
Zhong
,
Y.
Guan
,
X.
Chen
,
J.
Wang
, and
Z.
Fang
,
Lab Chip
8
,
1658
(
2008
).
45.
J.
Wang
,
H.
Ahmad
,
C.
Ma
,
Q.
Shi
,
O.
Vermesh
,
U.
Vermesh
, and
J.
Heath
,
Lab Chip
10
,
3157
(
2010
).
46.
I.
Meyvantsson
,
J. W.
Warrick
,
S.
Hayes
,
A.
Skoien
, and
D. J.
Beebe
,
Lab Chip
8
,
717
(
2008
).

Supplementary Material

You do not currently have access to this content.