Circulating tumor cells (CTCs) are prognostic markers for the recurrence of cancer and may carry molecular information relevant to cancer diagnosis. Dielectrophoresis (DEP) has been proposed as a molecular marker-independent approach for isolating CTCs from blood and has been shown to be broadly applicable to different types of cancers. However, existing batch-mode microfluidic DEP methods have been unable to process 10 ml clinical blood specimens rapidly enough. To achieve the required processing rates of 106 nucleated cells/min, we describe a continuous flow microfluidic processing chamber into which the peripheral blood mononuclear cell fraction of a clinical specimen is slowly injected, deionized by diffusion, and then subjected to a balance of DEP, sedimentation and hydrodynamic lift forces. These forces cause tumor cells to be transported close to the floor of the chamber, while blood cells are carried about three cell diameters above them. The tumor cells are isolated by skimming them from the bottom of the chamber while the blood cells flow to waste. The principles, design, and modeling of the continuous-flow system are presented. To illustrate operation of the technology, we demonstrate the isolation of circulating colon tumor cells from clinical specimens and verify the tumor origin of these cells by molecular analysis.

1.
M.
Cristofanilli
,
Breast
18
(
Suppl 3
),
S38
S40
(
2009
).
2.
D. C.
Danila
,
M.
Fleisher
, and
H. I.
Scher
,
Clin. Cancer Res.
17
,
3903
3912
(
2011
).
3.
N. J.
Meropol
,
Clin. Adv. Hematol. Oncol.
7
,
247
248
(
2009
).
4.
S.
Riethdorf
and
K.
Pantel
,
Pathobiology
75
,
140
148
(
2008
).
5.
M. C.
Miller
,
G. V.
Doyle
, and
L. W.
Terstappen
,
J. Oncol.
2010
,
617421
(
2010
).
6.
A.
Bonnomet
,
L.
Syne
,
A.
Brysse
,
E.
Feyereisen
,
E. W.
Thompson
,
A.
Noel
,
J. M.
Foidart
,
P.
Birembaut
,
M.
Polette
, and
C.
Gilles
,
Oncogene
31
,
3741
3753
(
2012
).
7.
H. A.
Pohl
,
Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields
(
Cambridge University Press
,
Cambridge
,
1978
).
8.
X. B.
Wang
,
Y.
Huang
,
P. R. C.
Gascoyne
,
F. F.
Becker
,
R.
Holzel
, and
R.
Pethig
,
Biochim. Biophys. Acta
1193
,
330
344
(
1994
).
9.
P. R. C.
Gascoyne
and
J.
Vykoukal
,
Electrophoresis
23
,
1973
1983
(
2002
).
10.
R.
Pethig
,
Biomicrofluidics
4
,
022811
(
2010
).
11.
F. F.
Becker
,
X. B.
Wang
,
Y.
Huang
,
R.
Pethig
,
J.
Vykoukal
, and
P. R.
Gascoyne
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
860
864
(
1995
).
12.
P. R.
Gascoyne
,
X. B.
Wang
,
Y.
Huang
, and
F. F.
Becker
,
IEEE Trans. Ind. Appl.
33
,
670
678
(
1997
).
13.
F. F.
Becker
,
H.
Huang
,
R.
Pethig
,
J.
Vykoukal
, and
P. R. C.
Gascoyne
,
J. Phys. D: Appl. Phys.
27
,
2659
(
1994
).
14.
A.
Salmanzadeh
,
L.
Romero
,
H.
Shafiee
,
R. C.
Gallo-Villanueva
,
M. A.
Stremler
,
S. D.
Cramer
, and
R. V.
Davalos
,
Lab Chip
12
,
182
189
(
2012
).
15.
L. M.
Broche
,
N.
Bhadal
,
M. P.
Lewis
,
S.
Porter
,
M. P.
Hughes
, and
F. H.
Labeed
,
Oral Oncol.
43
,
199
203
(
2007
).
16.
H. J.
Mulhall
,
F. H.
Labeed
,
B.
Kazmi
,
D. E.
Costea
,
M. P.
Hughes
, and
M. P.
Lewis
,
Anal. Bioanal. Chem.
401
,
2455
2463
(
2011
).
17.
A. C.
Sabuncu
,
J. A.
Liu
,
S. J.
Beebe
, and
A.
Beskok
,
Biomicrofluidics
4
,
021101
(
2010
).
18.
F.
Yang
,
X. M.
Yang
,
H.
Jiang
,
P.
Bulkhaults
,
P.
Wood
,
W.
Hrushesky
, and
G. R.
Wang
,
Biomicrofluidics
4
,
013204
(
2010
).
19.
S.
Shim
,
K.
Stemke-Hale
,
J.
Noshari
,
F.
Becker
, and
P. R. C.
Gascoyne
,
Biomicrofluidics
7
,
011808
(
2013
).
20.
X. B.
Wang
,
J.
Vykoukal
,
F. F.
Becker
, and
P. R.
Gascoyne
,
Biophys. J.
74
,
2689
2701
(
1998
).
21.
P. R. C.
Gascoyne
,
J.
Noshari
,
T. J.
Anderson
, and
F. F.
Becker
,
Electrophoresis
30
,
1388
1398
(
2009
).
22.
Y.
Huang
,
X. B.
Wang
,
F. F.
Becker
, and
P. R.
Gascoyne
,
Biophys. J.
73
,
1118
1129
(
1997
).
23.
G. H.
Markx
,
R.
Pethig
, and
J.
Rousselet
,
J. Phys. D: Appl. Phys.
30
,
2470
2477
(
1997
).
24.
Y.
Huang
,
J.
Yang
,
X. B.
Wang
,
F. F.
Becker
, and
P. R.
Gascoyne
,
J. Hematother. Stem Cell Res.
8
,
481
490
(
1999
).
25.
P. R.
Gascoyne
,
Anal. Chem.
81
,
8878
8885
(
2009
).
26.
J. P.
Brody
,
P.
Yager
,
R. E.
Goldstein
, and
R. H.
Austin
,
Biophys. J.
71
,
3430
3441
(
1996
).
27.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
Oxford
,
2008
).
28.
S.
Shim
,
P.
Gascoyne
,
J.
Noshari
, and
K. S.
Hale
,
Integr. Biol.
3
,
850
862
(
2011
).
29.
J.
Wu
,
A. J.
Daugulis
,
P.
Faulkner
, and
M. F.
Goosen
,
Biotechnol. Prog.
11
,
127
132
(
1995
).
30.
X.
Wang
,
J.
Yang
, and
P. R.
Gascoyne
,
Biochim. Biophys. Acta
1426
,
53
68
(
1999
).
31.
T. B.
Jones
and
G. A.
Kallio
,
J. Electrost.
6
,
18
(
1979
).
32.
K. L.
Chan
,
P. R. C.
Gascoyne
,
F. F.
Becker
, and
R.
Pethig
,
Biochim. Biophys. Acta
1349
,
182
196
(
1997
).
33.
J.
Vykoukal
,
D. M.
Vykoukal
,
S.
Freyberg
,
E. U.
Alt
, and
P. R. C.
Gascoyne
,
Lab Chip
8
,
1386
1393
(
2008
).
34.
P. R. C.
Gascoyne
, “
Isolation and characterization of cells by dielectrophoretic field-flow fractionation
,” in
Field-Flow Fractionation in Biopolymer Analysis
(
Springer-Verlag
,
2012
).
35.
M. G.
Alexandrakis
,
F. H.
Passam
,
K.
Perisinakis
,
E.
Ganotakis
,
G.
Margantinis
,
D. S.
Kyriakou
, and
D.
Bouros
,
Respir. Med.
96
,
553
558
(
2002
).
36.
V.
Gupta
,
I.
Jafferji
,
M.
Garza
,
V.
Melnikova
,
D.
Hasegawa
,
R.
Pethig
, and
D.
Davis
,
Biomicrofluidics
6
,
024133
(
2012
).
You do not currently have access to this content.