Demand for analysis of rare cells such as circulating tumor cells in blood at the single molecule level has recently grown. For this purpose, several cell separation methods based on antibody-coated micropillars have been developed (e.g., Nagrath et al., Nature 450, 1235–1239 (2007)). However, it is difficult to ensure capture of targeted cells by these methods because capture depends on the probability of cell-micropillar collisions. We developed a new structure that actively exploits cellular flexibility for more efficient capture of a small number of cells in a target area. The depth of the sandwiching channel was slightly smaller than the diameter of the cells to ensure contact with the channel wall. For cell selection, we used anti-epithelial cell adhesion molecule antibodies, which specifically bind epithelial cells. First, we demonstrated cell capture with human promyelocytic leukemia (HL-60) cells, which are relatively homogeneous in size; in situ single molecule analysis was verified by our rolling circle amplification (RCA) method. Then, we used breast cancer cells (SK-BR-3) in blood, and demonstrated selective capture and cancer marker (HER2) detection by RCA. Cell capture by antibody-coated microchannels was greater than with negative control cells (RPMI-1788 lymphocytes) and non-coated microchannels. This system can be used to analyze small numbers of target cells in large quantities of mixed samples.

1.
P. M.
Lizardi
,
X.
Huang
,
Z.
Zhu
,
P.
Bray-Ward
,
D. C.
Thomas
, and
D. C.
Ward
,
Nat. Genet.
19
,
225
(
1998
).
2.
J.
Jarvius
,
J.
Melin
,
J.
Göransson
,
J.
Stenberg
,
S.
Fredriksson
,
C.
Gonzalez-Rey
,
S.
Bertilsson
, and
M.
Nilsson
,
Nat. Methods
3
,
725
(
2006
).
3.
J.
Melin
,
J.
Jarvius
,
J.
Göransson
, and
M.
Nilsson
,
Anal. Biochem.
368
,
230
(
2007
).
4.
O.
Ericsson
,
J.
Jarvius
,
E.
Schallmeiner
,
M.
Howell
,
R. Y.
Nong
,
H.
Reuter
,
M.
Hahn
,
J.
Stenberg
,
M.
Nilsson
, and
U.
Landegren
,
Nucleic Acids Res
36
,
e45
(
2008
).
5.
J.
Göransson
,
C.
Wählby
,
M.
Isaksson
,
W. M.
Howell
,
J.
Jarvius
, and
M.
Nilsson
,
Nucleic Acids Res.
37
,
e7
(
2009
).
6.
C.
Larsson
,
J.
Koch
,
A.
Nygren
,
G.
Janssen
,
J.
Raap
,
U.
Landegren
, and
M.
Nilsson
,
Nat. Methods
1
,
227
(
2004
).
7.
J.
West
,
M.
Becker
,
S.
Tombrink
, and
A.
Manz
,
Anal. Chem.
80
,
4403
(
2008
).
8.
K.
Ohno
,
K.
Tachikawa
, and
A.
Manz
,
Electrophoresis
29
,
4443
(
2008
).
9.
10.
T.
Kitamori
,
M.
Tokeshi
,
A.
Hibara
, and
K.
Sato
,
Anal. Chem.
76
,
52A
(
2004
).
11.
Y.
Tanaka
,
K.
Sato
,
T.
Shimizu
,
M.
Yamato
,
T.
Okano
, and
T.
Kitamori
,
Biosens. Bioelectron.
23
,
449
(
2007
).
12.
Y.
Tanaka
,
H.
Xi
,
K.
Sato
,
K.
Mawatari
,
B.
Renberg
,
M.
Nilsson
, and
T.
Kitamori
,
Anal. Chem.
83
,
3352
(
2011
).
13.
A. Y.
Fu
,
C.
Spence
,
A.
Scherer
,
F. H.
Arnold
, and
S. R.
Quake
,
Nat. Biotechnol.
17
,
1109
(
1999
).
14.
A.
Wolff
,
I. R.
Perch-Nielsen
,
U. D.
Larsen
,
P.
Friis
,
G.
Goranovic
,
C. R.
Poulsen
,
J. P.
Kutter
, and
P.
Tellemana
,
Lab Chip
3
,
22
(
2003
).
15.
A. M.
Skelley
,
O.
Kirak
,
H.
Suh
,
R.
Jaenisch
, and
J.
Voldman
,
Nat. Methods
6
,
147
(
2009
).
16.
S.
Nagrath
,
L. V.
Sequist
,
S.
Maheswaran
,
D. W.
Bell
,
D.
Irimia
,
L.
Ulkus
,
M. R.
Smith
,
E. L.
Kwak
,
S.
Digumarthy
,
A.
Muzikansky
,
P.
Ryan
,
U. J.
Balis
,
R. G.
Tompkins
,
D. A.
Haber
, and
M.
Toner
,
Nature
450
,
1235
(
2007
).
17.
J. P.
Gleghorn
,
E. D.
Pratt
,
D.
Denning
,
H.
Liu
,
N. H.
Bander
,
S. T.
Tagawa
,
D. M.
Nanus
,
P. A.
Giannakakou
, and
B. J.
Kirby
,
Lab Chip
10
,
27
(
2010
).
18.
B.
Thierry
,
M.
Kurkuri
,
J. Y.
Shi
,
E. M. P. L.
Lwin
, and
D.
Palms
,
Biomicrofluidics
4
,
032205
(
2010
).
19.
S. L.
Stott
,
C.
Hsu
,
D. I.
Tsukrov
,
M.
Yu
,
D. T.
Miyamoto
,
B. A.
Waltman
,
S. M.
Rothenberg
,
A. M.
Shah
,
M. E.
Smas
,
G. K.
Korir
,
F. P.
Floyd
, Jr.
,
A. J.
Gilman
,
J. B.
Lord
,
D.
Winokur
,
S.
Springer
,
Daniel
Irimia
,
S.
Nagrath
,
L. V.
Sequist
,
R. J.
Lee
,
K. J.
Isselbacher
,
S.
Maheswaran
,
D. A.
Haber
, and
M.
Toner
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
18392
(
2010
).
20.
Y.
Xu
,
J. A.
Phillips
,
J.
Yan
,
Q.
Li
,
Z. H.
Fan
, and
W.
Tan
,
Anal. Chem.
81
,
7436
(
2009
).
21.
W.
Sheng
,
T.
Chen
,
R.
Kamath
,
X.
Xiong
,
W.
Tan
, and
Z. H.
Fan
,
Anal. Chem.
84
,
4199
(
2012
).
22.
A.
Hibara
,
S.
Iwayama
,
S.
Matsuoka
,
M.
Ueno
,
Y.
Kikutani
,
M.
Tokeshi
, and
T.
Kitamori
,
Anal. Chem.
77
,
943
(
2005
).
23.
K.
Jang
,
Y.
Xu
,
Y.
Tanaka
,
K.
Sato
,
K.
Mawatari
,
T.
Konno
,
K.
Ishihara
, and
T.
Kitamori
,
Biomicrofluidics
4
,
032208
(
2010
).
24.
K.
Jang
,
H. T.
Ngo
,
Y.
Tanaka
,
Y.
Xu
,
K.
Mawatari
, and
T.
Kitamori
,
Anal. Sci.
27
,
973
(
2011
).
25.
H. L.
Wamsley
and
A. F.
Barbet
,
J. Clin. Microbiol.
46
,
2314
(
2008
).
26.
C.
Larsson
,
I.
Grundberg
,
O.
Söderberg
, and
M.
Nilsson
,
Nat. Methods
7
,
395
(
2010
).
27.
M. J.
Rosenbluth
,
W. A.
Lam
, and
D. A.
Fletcher
,
Biophys. J.
90
,
2994
(
2006
).
28.
M. N.
Dickson
,
P.
Tsinberg
,
Z.
Tang
,
F. Z.
Bischoff
,
T.
Wilson
, and
E. F.
Leonard
,
Biomicrofluidics
5
,
034119
(
2011
).
29.
S. M.
Gomez
,
G.
Choy
,
N.
Kabir
, and
E. F.
Leonard
,
Biotechnol. Prog.
15
,
238
(
1999
).
30.
X.
Hu
,
P. H.
Bessette
,
J.
Qian
,
C. D.
Meinhart
,
P. S.
Daugherty
, and
H. T.
Soh
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
15757
(
2005
).
31.
D. W.
Inglis
,
R.
Riehn
,
J. C.
Sturm
, and
R. H.
Austin
,
Appl. Phys.
99
,
08K101
(
2006
).
32.
C.
Grenvall
,
P.
Augustsson
,
H.
Matsuoka
, and
T.
Laurell
, in
Proceedings of Micro Total Analysis Systems
, edited by
L. E.
Locascio
 et al (
The Chemical and Biological Microsystems Society
,
2008
), p.
161
.
33.
J. D.
Adams
and
H. T.
Soh
, in
Proceedings of Micro Total Analysis Systems
, edited by
S.
Verpoote
 et al (
The Chemical and Biological Microsystems Society
,
2010
), p.
205
.
34.
A.
Lenshof
and
T.
Laurell
,
Chem. Soc. Rev.
39
,
1203
(
2010
).
35.
A.
Lagunavicius
,
E.
Merkiene
,
Z.
Kiveryte
,
A.
Savaneviciute
,
V.
Zimbaite-Ruskuliene
,
T.
Radzvilavicius
, and
A.
Janulaitis
,
RNA
15
,
765
(
2009
).
You do not currently have access to this content.