Bacterial aggregation and patchiness play an important role in a variety of ecological processes such as competition, adaptation, epidemics, and succession. Here, we demonstrate that hydrodynamics of their environment can lead to their aggregation. This is specially important since microbial habitats are rarely at rest (e.g., ocean, blood stream, flow in porous media, and flow through membrane filtration processes). In order to study the dynamics of bacterial collection in a vortical flow, we utilize a microfluidic system to mimic some of the important microbial conditions at ecologically relevant spatiotemporal scales. We experimentally demonstrate the formation of “ring”-shaped bacterial collection patterns and subsequently the formation of biofilm streamers in a microfluidic system. Acoustic streaming of a microbubble is used to generate a vortical flow in a microchannel. Due to bacteria's finite-size, the microorganisms are directed to closed streamlines and trapped in the vortical flow. The collection of bacteria in the vortices occurs in a matter of seconds, and unexpectedly, triggers the formation of biofilm streamers within minutes. Swimming bacteria have a competitive advantage to respond to their environmental conditions. In order to investigate the role of bacterial motility on the rate of collection, two strains of Escherichia coli bacteria with different motilities are used. We show that the bacterial collection in a vortical flow is strongly pronounced for high motile bacteria.

1.
T.
Fenchel
, “
Microbial behavior in a heterogeneous world
,”
Science
296
(
5570
),
1068
(
2002
).
2.
P.
Legendre
and
M. J.
Fortin
, “
Spatial pattern and ecological analysis
,”
Plant Ecol.
80
(
2
),
107
138
(
1989
).
3.
A. M.
Ardekani
and
E.
Gore
, “
Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid
,”
Phys. Rev. E
85
,
056309
(
2012
).
4.
W. M.
Durham
,
E.
Climent
, and
R.
Stocker
, “
Gyrotaxis in a steady vortical flow
,”
Phys. Rev. Lett.
106
(
23
),
238102
(
2011
).
5.
R. H.
Luchsinger
,
B.
Bergersen
, and
J. G.
Mitchell
, “
Bacterial swimming strategies and turbulence
,”
Biophys. J.
77
(
5
),
2377
2386
(
1999
).
6.
Marcos
and
R.
Stocker
, “
Microorganisms in vortices: A microfluidic setup
,”
Limnol. Oceanogr.
4
,
392
398
(
2006
).
7.
W. L.
Nyborg
,
Acoustic Streaming
(
Academic
,
New York
,
1965
), Vol. 2.
8.
M. S.
Longuet-Higgins
, “
Viscous streaming from an oscillating spherical bubble
,”
Proc. R. Soc. London, Ser. A
454
(
1970
),
725
(
1998
).
9.
T.
Kim
,
I.
Doh
, and
Y. H.
Cho
, “
On-chip three-dimensional tumor spheroid formation and pump-less perfusion culture using gravity-driven cell aggregation and balanced droplet dispensing
,”
Biomicrofluidics
6
,
034107
(
2012
).
10.
L. Y.
Yeo
,
D.
Hou
,
S.
Maheshswari
, and
H. C.
Chang
, “
Electrohydrodynamic surface microvortices for mixing and particle trapping
,”
Appl. Phys. Lett.
88
(
23
),
233512
(
2006
).
11.
D. S. W.
Lim
,
J. P.
Shelby
,
J. S.
Kuo
, and
D. T.
Chiu
, “
Dynamic formation of ring-shaped patterns of colloidal particles in microfluidic systems
,”
Appl. Phys. Lett.
83
(
6
),
1145
1147
(
2003
).
12.
H.
Ota
,
T.
Kodama
, and
N.
Miki
, “
Rapid formation of size-controlled three dimensional hetero-cell aggregates using micro-rotation flow for spheroid study
,”
Biomicrofluidics
5
(
3
),
034105
(
2011
).
13.
K. V.
Sharp
,
S. H.
Yazdi
, and
S. M.
Davison
, “
Localized flow control in microchannels using induced-charge electroosmosis near conductive obstacles
,”
Microfluidics Nanofluidics
10
(
6
),
1257
1267
(
2011
).
14.
R.
Pethig
, “
Review article—dielectrophoresis: Status of the theory, technology, and applications
,”
Biomicrofluidics
4
,
022811
(
2010
).
15.
S. C.
Hur
,
A. J.
Mach
, and
D.
Di Carlo
, “
High-throughput size-based rare cell enrichment using microscale vortices
,”
Biomicrofluidics
5
,
022206
(
2011
).
16.
P.
Stoodley
,
K.
Sauer
,
D. G.
Davies
, and
J. W.
Costerton
, “
Biofilms as complex differentiated communities
,”
Annu. Rev. Microbiol.
56
(
1
),
187
209
(
2002
).
17.
G.
O'Toole
,
H. B.
Kaplan
, and
R.
Kolter
, “
Biofilm formation as microbial development
,”
Annu. Rev. Microbiol.
54
(
1
),
49
79
(
2000
).
18.
A.
Valiei
,
A.
Kumar
,
P. P.
Mukherjee
,
Y.
Liu
, and
T.
Thundat
, “
A web of streamers: Biofilm formation in a porous microfluidic device
,”
Lab Chip
12
,
5133
5137
(
2012
).
19.
R.
Rusconi
,
S.
Lecuyer
,
L.
Guglielmini
, and
H. A.
Stone
, “
Laminar flow around corners triggers the formation of biofilm streamers
,”
J. R. Soc. Interface
7
(
50
),
1293
(
2010
).
20.
P.
Stoodley
,
Z.
Lewandowski
,
J. D.
Boyle
, and
H. M.
Lappin-Scott
, “
Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop
,”
Biotechnol. Bioeng.
57
,
536
544
(
1998
).
21.
T. F.
Mah
,
B.
Pitts
,
B.
Pellock
,
G. C.
Walker
,
P. S.
Stewart
, and
G. A.
O'Toole
, “
A genetic basis for pseudomonas aeruginosa biofilm antibiotic resistance
,”
Nature
426
,
306
310
(
2003
).
22.
K.
Lewis
, “
Persister cells, dormancy and infectious disease
,”
Nat. Rev. Microbiol.
5
(
1
),
48
56
(
2007
).
23.
D.
Hou
,
S.
Maheshwari
, and
H. C.
Chang
, “
Rapid bioparticle concentration and detection by combining a discharge driven vortex with surface enhanced Raman scattering
,”
Biomicrofluidics
1
,
014106
(
2007
).
24.
K.
Zhu
,
A. S.
Kaprelyants
,
E. G.
Salina
,
M.
Schuler
, and
G. H.
Markx
, “
Construction by dielectrophoresis of microbial aggregates for the study of bacterial cell dormancy
,”
Biomicrofluidics
4
(
2
),
022810
(
2010
).
25.
J. W.
Costerton
,
P. S.
Stewart
, and
E. P.
Greenberg
, “
Bacterial biofilms: A common cause of persistent infections
,”
Science
284
,
1318
1322
(
1999
).
26.
M. H.
Turakhia
,
K. E.
Cooksey
, and
W. G.
Characklis
, “
Influence of a calcium-specific chelant on biofilm removal
,”
Appl. Environ. Microbiol.
46
(
5
),
1236
1238
(
1983
).
27.
I. B.
Beech
and
J.
Sunner
, “
Biocorrosion: Towards understanding interactions between biofilms and metals
,”
Curr. Opin. Biotechnol.
15
,
181
186
(
2004
).
28.
I.
Klapper
and
J.
Dockery
, “
Mathematical description of microbial biofilms
,”
SIAM Rev.
52
,
221
265
(
2010
).
29.
J. S.
Vrouwenvelder
,
D. A.
Graf von der Schulenburg
,
J. C.
Kruithof
,
M. L.
Johns
, and
M. C. M.
van Loosdrecht
, “
Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: A feed spacer problem
,”
Water Res.
43
,
583
594
(
2009
).
30.
H. C.
Flemming
, “
Reverse osmosis membrane biofouling
,”
Exp. Therm. Fluid Sci.
14
,
382
391
(
1997
).
31.
G.
Tchobanoglous
,
F. L.
Burton
, and
H. D.
Stensel
,
Wastewater Engineering: Treatment and Reuse
, 4th ed. (
Metcalf and Eddy Inc.
,
McGraw Hill, New York
,
2003
).
32.
R. W.
Harvey
,
R. L.
Smith
, and
L.
George
, “
Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer
,”
Appl. Environ. Microbiol.
48
,
1197
1202
(
1984
).
33.
A. C.
Mitchell
,
A. J.
Phillips
,
R.
Hiebert
,
R.
Gerlach
,
L. H.
Spangler
, and
A. B.
Cunningham
, “
Biofilm enhanced geologic sequestration of supercritical CO2
,”
Int. J. Greenhouse Gas Control
3
,
90
99
(
2009
).
34.
D.
Ahmed
,
X.
Mao
,
J.
Shi
,
B. K.
Juluri
, and
T. J.
Huang
, “
A millisecond micromixer via single-bubble-based acoustic streaming
,”
Lab Chip
9
(
18
),
2738
2741
(
2009
).
35.
Y.
Xia
and
G. M.
Whitesides
, “
Soft lithography
,”
Annu. Rev. Mater. Sci.
28
(
1
),
153
184
(
1998
).
36.
T. K.
Wood
,
A. F.
González Barrios
,
M.
Herzberg
, and
J.
Lee
, “
Motility influences biofilm architecture in Escherichia coli
,”
Appl. Microbiol. Biotechnol.
72
(
2
),
361
367
(
2006
).
37.
W.
Zhuang
,
D.
Yuan
,
J. R.
Li
,
Z.
Luo
,
H. C.
Zhou
,
S.
Bashir
, and
J.
Liu
, “
Highly potent bactericidal activity of porous metal-organic frameworks
,”
Adv. Healthcare Mater.
1
(
2
),
225
238
(
2012
).
38.
S. A.
Elder
, “
Cavitation microstreaming
,”
J. Acoust. Soc. Am.
31
,
54
(
1959
).
39.
C.
Wang
,
S. V.
Jalikop
, and
S.
Hilgenfeldt
, “
Size-sensitive sorting of microparticles through control of flow geometry
,”
Appl. Phys. Lett.
99
,
034101
(
2011
).
40.
C.
Wang
,
S. V.
Jalikop
, and
S.
Hilgenfeldt
, “
Efficient manipulation of microparticles in bubble streaming flows
,”
Biomicrofluidics
6
(
1
),
012801
(
2012
).
41.
H. C.
Berg
,
E. coli in Motion
(
Springer Verlag
,
2004
).
42.
N.
Watari
and
R. G.
Larson
, “
The hydrodynamics of a run-and-tumble bacterium propelled by polymorphic helical flagella
,”
Biophys. J.
98
(
1
),
12
17
(
2010
).
43.
D. L.
Miller
, “
Particle gathering and microstreaming near ultrasonically activated gas-filled micropores
,”
J. Acoust. Soc. Am.
84
(
4
),
1378
1387
(
1988
).
44.
R.
Stocker
, “
Reverse and flick: Hybrid locomotion in bacteria
,”
Proc. Natl. Acad. Sci. U.S.A.
108
(
7
),
2635
2636
(
2011
).
45.
Y.
Chao
and
T.
Zhang
, “
Probing roles of lipopolysaccharide, fimbria and colanic acid in the attachment of Escherichia coli strains on inert surfaces
.”
Langmuir
27
(
18
),
11545
11553
(
2011
).
46.
I. H.
Riedel
,
K.
Kruse
, and
J.
Howard
, “
A self-organized vortex array of hydrodynamically entrained sperm cells
,”
Science
309
,
300
303
(
2005
).
47.
National Research Council,
Opportunities for Environmental Applications of Marine Biotechnology: Proceedings of the October 5-6, 1999, Workshop
(
National Academy
,
2000
).
48.
W. C.
Fuqua
,
S. C.
Winans
, and
E. P.
Greenberg
, “
Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators
,”
J. Bacteriol.
176
,
269
275
(
1994
).
49.
S.
Atkinson
and
P.
Williams
, “
Quorum sensing and social networking in the microbial world
,”
J. R. Soc. Interface
6
(
40
),
959
978
(
2009
).
50.
I.
Joint
, “
Bacterial conversations: talking, listening and eavesdropping. a NERC discussion meeting held at the Royal Society on 7 December 2005
,”
J. R. Soc. Interface
3
(
8
),
459
463
(
2006
).
51.
P. N.
Danese
,
L. A.
Pratt
, and
R.
Kolter
, “
Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture
,”
J. Bacteriol.
182
(
12
),
3593
3596
(
2000
).
You do not currently have access to this content.