A variety of methods have been used to introduce chemicals into a stream or to mix two or more streams of different compositions using microfluidic devices. In the following paper, the introduction of cryoprotective agents (CPAs) used during cryopreservation of cells in order to protect them from freezing injuries and increase viability post thaw is described. Dimethylsulphoxide (DMSO) is the most commonly used CPA. We aim to optimize the operating conditions of a two-stream microfluidic device to introduce a 10% vol/vol solution of DMSO into a cell suspension. Transport behavior of DMSO between two streams in the device has been experimentally characterized for a spectrum of flow conditions (0.7 < Re < 10), varying initial donor stream concentrations, (1% vol/vol < Co < 15% vol/vol) and different flow rate fractions (0.23 < fq < 0.77). The outlet cell stream concentration is analyzed for two different flow configurations: one with the cell stream flowing on top of the DMSO-rich donor stream, and the other with the cell stream flowing beneath the heavy DMSO-laden stream. We establish a transition from a diffusive mode of mass transfer to gravity-influenced convective currents for Atwood numbers (At) in the range of (1.7 × 10−3 < At < 3.1 × 10−3) for the latter configuration. Flow visualization with cells further our understanding of the effect of At on the nature of mass transport. Cell motion studies performed with Jurkat cells confirm a high cell recovery from the device while underscoring the need to collect both the streams at the outlet of the device and suggesting flow conditions that will help us achieve the target DMSO outlet concentration for clinical scale flow rates of the cell suspension.

1.
G. A.
Mensing
,
D. J.
Beebe
, and
G. M.
Walker
, “
Physics and applications of microfluidics in biology
,”
Annu. Rev. Biomed. Eng.
4
,
261
286
(
2002
).
2.
M.
Debacq
,
J. P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E. J.
Hinch
, “
Buoyant mixing of miscible fluids of varying viscosities in vertical tubes
,”
Phys. Fluids
15
,
3846
3855
(
2003
).
3.
G. M.
Fahy
,
T. H.
Lilley
,
H.
Linsdell
,
M. S.
Douglas
, and
H. T.
Meryman
, “
Cryoprotectant toxicity and cryoprotectant toxicity reduction: In search of molecular mechanisms
,”
Cryobiology
27(3)
,
247
(
1990
).
4.
K. K.
Fleming Glass
,
E. K.
Longmire
, and
A.
Hubel
, “
Optimization of a microfluidic device for diffusion-based extraction of DMSO from a cell suspension
,”
Int. J. Heat Mass Transfer
51
,
5749
5757
(
2008
).
5.
K. K.
Fleming
,
E. K.
Longmire
, and
A.
Hubel
, “
Numerical characterization of diffusion-based extraction in cell-laden flow through a microfluidic channel
,”
J. Biomech. Eng.
129
,
703
711
(
2007
).
6.
J. K.
Fraser
,
M. S.
Cairo
,
E. L.
Wagner
,
P. R.
McCurdy
,
L. A.
Baxter-Lowe
,
S. L.
Carter
,
N. A.
Kernan
,
M. C.
Lill
,
V.
Slone
,
J. E.
Wagner
,
C. H.
Wallas
, and
J.
Kurtzberg
, “
Cord blood transplantation study (COBLT): Cord blood bank standard operating procedures
,”
J. Hematother.
7
,
521
561
(
1998
).
7.
J.
Hanna
,
A.
Hubel
, and
E.
Lemke
, “
Diffusion-based extraction of dmso from a cell suspension in a three stream, vertical microchannel
,”
Biotechnol. Bioeng.
109
,
2316
2324
(
2012
).
8.
A.
Hubel
,
Cryopreservation of Cellular Therapy Products, in Cellular Therapy: Principles, Methods, and Regulations
(
AABB
,
Bethesda, MD
,
2009
), pp.
342
349
.
9.
D.
Posner Jonathan
and
G.
Santiago Juan
, “
Convective instability of electrokinetic flows in a cross-shaped microchannel
,”
J. Fluid Mech.
555
,
1
42
(
2006
).
10.
J. M.
Ottino
and
S.
Wiggins
, “
Introduction: Mixing in microfluidics
,”
Philos. Trans. R. Soc. London, Ser. A
362
(
1818
),
923
935
(
2004
).
11.
E. A.
Mansur
,
M.
Ye
,
Y.
Wang
, and
Y.
Dai
, “
A state-of-the-art review of mixing in microfluidic mixers
,”
Chin. J. Chem. Eng.
16
,
503
516
(
2008
).
12.
C.
Mata
,
E.
Longmire
,
D.
McKenna
,
K.
Glass
, and
A.
Hubel
, “
Cell motion and recovery in a two-stream microfluidic device
,”
Microfluid. Nanofluid.
8
,
457
465
(
2010
).
13.
C.
Mata
, “
Experimental study of diffusion-based extraction from a cell suspension
,”
Microfluid. Nanofluid.
5
,
529
540
(
2008
).
14.
Y.
Yamaguchi
,
H.
Nakamura
 et al, “
Influence of gravity on two-layer laminar flow in a microchannel
,”
Chem. Eng. Technol.
30
,
379
(
2007
).
15.
M. H.
Oddy
,
J. G.
Santiago
, and
J. C.
Mikkelsen
, “
Electrokinetic instability micromixing
,”
Anal. Chem.
73
,
5822
5832
(
2001
).
16.
D. H.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Physica D
12
,
3
10
IN1
IN10
11
18
(
1984
).
17.
Jr-H.
Tsai
and
L.
Lin
, “
Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump
,”
Sens. Actuators, A
97–98
,
665
671
(
2002
).
18.
Y. S.
Song
,
S. J.
Moon
,
L.
Hulli
,
S. K.
Hasan
,
E.
Kayaalp
, and
U.
Demirci
, “
Microfluidics for cryopreservation
,”
Lab Chip
9
,
1874
1881
(
2009
).
You do not currently have access to this content.