Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of input pressures, in the absence of surfactants is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than that of conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size, and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level.

1.
F.
Guo
,
K.
Liu
,
X. H.
Ji
,
H. J.
Ding
,
M.
Zhang
,
Q.
Zeng
,
W.
Liu
,
S. S.
Guo
, and
X. Z.
Zhao
,
Appl. Phys. Lett.
97
,
233701
(
2010
).
2.
Y.
Wang
and
O.
Annunziata
,
Langmuir
24
,
2799
(
2008
).
3.
J. H.
Park
,
A. M.
Derfus
,
E.
Segal
,
K. S.
Vecchio
,
S. N.
Bhatia
, and
M. J.
Sailor
,
J. Am. Chem. Soc.
128
,
7938
(
2006
).
4.
R. N.
Zare
and
S.
Kim
,
Annu. Rev. Biomed. Eng.
12
,
187
(
2010
).
5.
A. E.
Sgro
,
P. B.
Allen
, and
D. T.
Chiu
,
Anal. Chem.
79
,
4845
(
2007
).
6.
S.
Moon
,
Y. G.
Kim
,
L.
Dong
,
M.
Lombardi
,
E.
Haeggstrom
,
R. V.
Jensen
,
L. L.
Hsiao
, and
U.
Demirci
,
PLoS ONE
6
,
e17455
(
2011
).
7.
M.
He
,
J. S.
Edgar
,
G. D. M.
Jeffries
,
R. M.
Lorenz
,
J. P.
Shelby
, and
D. T.
Chiu
,
Anal. Chem.
77
,
1539
(
2005
).
8.
M. C.
Morales
and
J. D.
Zahn
,
Microfluid. Nanofluid.
9
,
1041
(
2010
).
9.
N.
Wu
,
J. G.
Oakeshott
,
C. J.
Easton
,
T. S.
Peat
,
R.
Surjadi
, and
Y.
Zhu
,
J. Micromech. Microeng.
21
,
054032
(
2011
).
10.
J.-C.
Baret
 et al.,
Lab Chip
9
,
1850
(
2009
).
11.
A. B.
Theberge
,
F.
Courtois
,
Y.
Schaerli
,
M.
Fischlechner
,
C.
Abell
,
F.
Hollfelder
, and
W. T. S.
Huck
,
Angew. Chem., Int. Ed.
49
,
5846
(
2010
).
12.
U.
Eujin
,
L.
Seung Goo
, and
P.
Je Kyun
,
Appl. Phys. Lett.
97
,
153703
(
2010
).
13.
D.
Chiu
,
Anal. Bioanal. Chem.
397
,
3179
(
2010
).
14.
K.
Zengler
,
G.
Toledo
,
M.
Rappé
,
J.
Elkins
,
E. J.
Mathur
,
J. M.
Short
, and
M.
Keller
,
Proc. Natl. Acad. Sci.
99
,
15681
(
2002
).
15.
C.
Foo
,
J. S.
Lee
,
W.
Mulyasasmita
,
A.
Parisi Amon
, and
S. C.
Heilshorn
,
Proc. Natl. Acad Sci. U.S.A.
106
,
22067
(
2009
).
16.
J.
Liu
,
J. M.
Lin
,
H. F.
Li
, and
D.
Gao
,
Lab Chip
9
,
1301
(
2009
).
17.
I.
Strehin
,
Z.
Nahas
,
K.
Arora
,
N.
Thao
, and
J.
Elisseeff
,
Biomaterials
31
,
2788
(
2010
).
18.
C. M.
Silva
,
A. J.
Ribeiro
,
I. V.
Figueiredo
,
A. R.
Gonçalves
, and
F.
Veiga
,
Int. J. Pharm.
311
,
1
(
2006
).
19.
H.
Zhang
,
E.
Tumarkin
,
R.
Peerani
,
Z.
Nie
,
R. M. A.
Sullan
,
G. C.
Walker
, and
E.
Kumacheva
,
J. Am. Chem. Soc.
128
,
12205
(
2006
).
20.
C. H.
Choi
,
J. H.
Jung
,
Y.
Rhee
,
D. P.
Kim
,
S. E.
Shim
, and
C. S.
Lee
,
Biomed. Microdevices
9
,
855
(
2007
).
21.
V. L.
Workman
,
S. B.
Dunnett
,
P.
Kille
, and
D. D.
Palmer
,
Biomicrofluidics
1
,
014105
(
2007
).
22.
W. H.
Tan
and
S.
Takeuchi
,
Adv. Mater.
19
,
2696
(
2007
).
23.
H.
Kitagawa
,
W. H.
Tan
, and
S.
Takeuchi
, in
20th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2007, 21–25 January 2007
(
Institute of Electrical and Electronics Engineers
,
Kobe, Japan
,
2007
), p.
493
.
24.
H.
Shintaku
,
T.
Kuwabara
,
S.
Kawano
,
T.
Suzuki
,
I.
Kanno
, and
H.
Kotera
,
Microsyst. Technol.
13
,
951
(
2007
).
25.
E.
Um
,
D. S.
Lee
,
H. B.
Pyo
, and
J.-K.
Park
,
Microfluid. Nanofluid.
5
,
541
(
2008
).
26.
R.
Dreyfus
,
P.
Tabeling
, and
H.
Willaime
,
Phys. Rev. Lett.
90
,
144505
(
2003
).
27.
J.
Berthier
,
S.
Le Vot
,
P.
Tiquet
,
N.
David
,
D.
Lauro
,
P. Y.
Benhamou
, and
F.
Rivera
,
Sens. Actuators, A
158
,
140
(
2010
).
28.
D. H.
Lee
,
W.
Lee
,
E.
Um
, and
J. K.
Park
,
Biomicrofluidics
5
,
034117
(
2011
).
29.
S. Y.
Teh
,
R.
Khnouf
,
H.
Fan
, and
A. P.
Lee
,
Biomicrofluidics
5
,
044113
(
2011
).
30.
R. M.
Erb
,
D.
Obrist
,
P. W.
Chen
,
J.
Studer
, and
A. R.
Studart
,
Soft Matter
7
,
8757
(
2011
).
31.
T.
Kong
,
J.
Wu
,
M.
To
,
K. W. K.
Yeung
,
H. C.
Shum
, and
L.
Wang
,
Biomicrofluidics
6
,
034104
(
2012
).
32.
S. L.
Anna
,
N.
Bontoux
, and
H. A.
Stone
,
Appl. Phys. Lett.
82
,
364
(
2003
).
33.
R. K.
Shah
,
J. W.
Kim
,
J. J.
Agresti
,
D. A.
Weitz
, and
L. Y.
Chu
,
Soft Matter
4
,
2303
(
2008
).
34.
T.
Thorsen
,
R. W.
Roberts
,
F. H.
Arnold
, and
S. R.
Quake
,
Phys. Rev. Lett.
86
,
4163
(
2001
).
35.
See supplementary material at http://dx.doi.org/10.1063/1.4765337 for a description of the phase space as a function of capillary number.
36.
S. Y.
Jung
,
S. T.
Retterer
, and
C. P.
Collier
,
Lab Chip
10
,
2688
(
2010
).
37.
See http://www.q-chip.com and U.S. patent US8114319 for additional information on microsphere manufacturing.
38.
S.
Sugiura
,
M.
Nakajima
, and
M.
Seki
,
Ind. Eng. Chem. Res.
41
,
4043
(
2002
).
39.
S.
Xu
 et al.,
Angew. Chem., Int. Ed.
44
,
724
(
2005
).
40.
T.
Ward
,
M.
Faivre
,
M.
Abkarian
, and
H. A.
Stone
,
Electrophoresis
26
,
3716
(
2005
).

Supplementary Material

You do not currently have access to this content.