Water-in-oil microdroplets offer microreactors for compartmentalized biochemical reactions with high throughput. Recently, the combination with a sol-gel switch ability, using agarose-in-oil microdroplets, has increased the range of possible applications, allowing for example the capture of amplicons in the gel phase for the preservation of monoclonality during a PCR reaction. Here, we report a new method for generating such agarose-in-oil microdroplets on a microfluidic device, with minimized inlet dead volume, on-chip cooling, and in situ monitoring of biochemical reactions within the gelified microbeads. We used a flow-focusing microchannel network and successfully generated agarose microdroplets at room temperature using the “push-pull” method. This method consists in pushing the oil continuous phase only, while suction is applied to the device outlet. The agarose phase present at the inlet is thus aspirated in the device, and segmented in microdroplets. The cooling system consists of two copper wires embedded in the microfluidic device. The transition from agarose microdroplets to microbeads provides additional stability and facilitated manipulation. We demonstrate the potential of this method by performing on-chip a temperature-triggered DNA isothermal amplification in agarose microbeads. Our device thus provides a new way to generate microbeads with high throughput and no dead volume for biochemical applications.

1.
B.
Zheng
,
L. S.
Roach
, and
R. F.
Ismagilov
,
J. Am. Chem. Soc.
125
(
37
),
11170
11171
(
2003
).
2.
T.
Hatakeyama
,
D. L.
Chen
, and
R. F.
Ismagilov
,
J. Am. Chem. Soc.
128
(
8
),
2518
2519
(
2006
).
3.
I.
Shestopalov
,
J. D.
Tice
, and
R. F.
Ismagilov
,
Lab Chip
4
(
4
),
316
321
(
2004
).
4.
M.
Margulies
,
M.
Egholm
,
W. E.
Altman
,
S.
Attiya
,
J. S.
Bader
,
L. A.
Bemben
,
J.
Berka
,
M. S.
Braverman
,
Y. J.
Chen
,
Z.
Chen
,
S. B.
Dewell
,
L.
Du
,
J. M.
Fierro
,
X. V.
Gomes
,
B. C.
Godwin
,
W.
He
,
S.
Helgesen
,
C. H.
Ho
,
G. P.
Irzyk
,
S. C.
Jando
,
M. L.
Alenquer
,
T. P.
Jarvie
,
K. B.
Jirage
,
J. B.
Kim
,
J. R.
Knight
,
J. R.
Lanza
,
J. H.
Leamon
,
S. M.
Lefkowitz
,
M.
Lei
,
J.
Li
,
K. L.
Lohman
,
H.
Lu
,
V. B.
Makhijani
,
K. E.
McDade
,
M. P.
McKenna
,
E. W.
Myers
,
E.
Nickerson
,
J. R.
Nobile
,
R.
Plant
,
B. P.
Puc
,
M. T.
Ronan
,
G. T.
Roth
,
G. J.
Sarkis
,
J. F.
Simons
,
J. W.
Simpson
,
M.
Srinivasan
,
K. R.
Tartaro
,
A.
Tomasz
,
K. A.
Vogt
,
G. A.
Volkmer
,
S. H.
Wang
,
Y.
Wang
,
M. P.
Weiner
,
P.
Yu
,
R. F.
Begley
, and
J. M.
Rothberg
,
Nature
437
(
7057
),
376
380
(
2005
).
5.
M. T.
Guo
,
A.
Rotem
,
J. A.
Heyman
, and
D. A.
Weitz
,
Lab Chip
12
(
12
),
2146
2155
(
2012
).
6.
A. B.
Theberge
,
G.
Whyte
, and
W. T.
Huck
,
Anal. Chem.
82
(
9
),
3449
3453
(
2010
).
7.
M.
Zagnoni
and
J. M.
Cooper
,
Methods Cell Biol.
102
,
25
48
(
2011
).
8.
B. T.
Kelly
,
J. C.
Baret
,
V.
Taly
, and
A. D.
Griffiths
,
Chem. Commun. (Cambridge)
2007
(
18
),
1773
1788
.
9.
R.
Tewhey
,
J. B.
Warner
,
M.
Nakano
,
B.
Libby
,
M.
Medkova
,
P. H.
David
,
S. K.
Kotsopoulos
,
M. L.
Samuels
,
J. B.
Hutchison
,
J. W.
Larson
,
E. J.
Topol
,
M. P.
Weiner
,
O.
Harismendy
,
J.
Olson
,
D. R.
Link
, and
K. A.
Frazer
,
Nat. Biotechnol.
27
(
11
),
1025
1031
(
2009
).
10.
B. E.
Debs
,
R.
Utharala
,
I. V.
Balyasnikova
,
A. D.
Griffiths
, and
C. A.
Merten
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
29
),
11570
11575
(
2012
).
11.
T.
Rossow
,
J. A.
Heyman
,
A. J.
Ehrlicher
,
A.
Langhoff
,
D. A.
Weitz
,
R.
Haag
, and
S.
Seiffert
,
J. Am. Chem. Soc.
134
(
10
),
4983
4989
(
2012
).
12.
Y.
Zeng
,
R.
Novak
,
J.
Shuga
,
M. T.
Smith
, and
R. A.
Mathies
,
Anal. Chem.
82
(
8
),
3183
3190
(
2010
).
13.
H.
Zhang
,
G.
Jenkins
,
Y.
Zou
,
Z.
Zhu
, and
C. J.
Yang
,
Anal. Chem.
84
(
8
),
3599
3606
(
2012
).
14.
A.
Fallah-Araghi
,
J. C.
Baret
,
M.
Ryckelynck
, and
A. D.
Griffiths
,
Lab Chip
12
(
5
),
882
891
(
2012
).
15.
X.
Leng
,
W.
Zhang
,
C.
Wang
,
L.
Cui
, and
C. J.
Yang
,
Lab Chip
10
(
21
),
2841
2843
(
2010
).
16.
W. Y.
Zhang
,
W.
Zhang
,
Z.
Liu
,
C.
Li
,
Z.
Zhu
, and
C. J.
Yang
,
Anal. Chem.
84
(
1
),
350
355
(
2012
).
17.
A.
Kumachev
,
J.
Greener
,
E.
Tumarkin
,
E.
Eiser
,
P. W.
Zandstra
, and
E.
Kumacheva
,
Biomaterials
32
(
6
),
1477
1483
(
2011
).
18.
Y. J.
Eun
,
A. S.
Utada
,
M. F.
Copeland
,
S.
Takeuchi
, and
D. B.
Weibel
,
ACS Chem. Biol.
6
(
3
),
260
266
(
2011
).
19.
J. C.
Baret
,
F.
Kleinschmidt
,
A.
El Harrak
, and
A. D.
Griffiths
,
Langmuir
25
(
11
),
6088
6093
(
2009
).
20.
Y. N.
Xia
and
G. M.
Whitesides
,
Angew. Chem., Int. Ed.
37
(
5
),
551
575
(
1998
).
21.
J. C.
McDonald
,
D. C.
Duffy
,
J. R.
Anderson
,
D. T.
Chiu
,
H.
Wu
,
O. J.
Schueller
, and
G. M.
Whitesides
,
Electrophoresis
21
(
1
),
27
40
(
2000
).
22.
A.
Edelstein
,
N.
Amodaj
,
K.
Hoover
,
R.
Vale
, and
N.
Stuurman
,
Curr. Protoc. Mol. Biol.
14
,
20
(
2010
).
23.
Z. H.
Nie
,
M. S.
Seo
,
S. Q.
Xu
,
P. C.
Lewis
,
M.
Mok
,
E.
Kumacheva
,
G. M.
Whitesides
,
P.
Garstecki
, and
H. A.
Stone
,
Microfluid. Nanofluid.
5
(
5
),
585
594
(
2008
).
24.
J. Y.
Xiong
,
J.
Narayanan
,
X. Y.
Liu
,
T. K.
Chong
,
S. B.
Chen
, and
T. S.
Chung
,
J. Phys. Chem. B
109
(
12
),
5638
5643
(
2005
).
25.
G. T.
Walker
,
M. C.
Little
,
J. G.
Nadeau
, and
D. D.
Shank
,
Proc. Natl. Acad. Sci. U. S. A.
89
(
1
),
392
396
(
1992
).
26.
A.
Padirac
,
T.
Fujii
, and
Y.
Rondelez
,
Nucleic Acids Res.
40
(
15
),
e118
(
2012
).
27.
K.
Montagne
,
R.
Plasson
,
Y.
Sakai
,
T.
Fujii
, and
Y.
Rondelez
,
Mol. Syst. Biol.
7
,
466
(
2011
).
28.
See supplemental material at http://dx.doi.org/10.1063/1.4758460 for the control experiments in agarose and for comsol simulation of the temperature in the chamber of the device.

Supplementary Material

You do not currently have access to this content.