A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm in radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to derive quantities for sub-cellular units. Clausius-Mossotti factor of Jurkat cells is extracted from the impedance spectrum. Effects of cellular heterogeneity are discussed and parameterized. Jurkat cells are also tested with a time domain reflectometry system for verification of the microfluidic device. Results indicate good agreement of values obtained with both techniques. The device can be used as a unique cell diagnostic tool to yield information on sub-cellular units.

1.
H.
Fricke
,
J. Gen. Physiol.
9
,
137
152
(
1925
).
2.
Y.
Feldman
,
I.
Ermolina
, and
Y.
Hayashi
,
IEEE Trans. Dielectr. Electr. Insul.
10
,
728
753
(
2003
).
3.
I.
Ermolina
,
Y.
Polevaya
,
Y.
Feldman
,
B.
Ginzburg
, and
M.
Schlesinger
,
IEEE Trans. Dielectr. Electr. Insul.
8
,
253
261
(
2001
).
4.
G.
Markx
and
C.
Davey
,
Enzyme Microb. Technol.
25
,
161
171
(
1999
).
5.
O.
Schanne
and
E.
Ceretti
,
Impedance Measurements in Biological Cells
(
John Wiley & Sons
,
1978
).
6.
D.
Kell
and
C.
Harris
,
Electromagn. Biol. Med.
4
,
317
348
(
1985
).
7.
K.
Cole
,
Membranes, Ions, and Impulses
(
University of California Press
,
Berkeley
,
1972
).
8.
R.
Pethig
and
D.
Kell
,
Phys. Med. Biol.
32
,
933
970
(
1987
).
9.
H.
Schwan
,
Adv. Biol. Med. Phys.
5
,
147
(
1957
).
10.
R.
Pethig
,
IEEE Trans. Electr. Insul.
EI-19
(5),
453
474
(
1984
).
11.
M.
Stuchly
,
J. Microwave Power
15
,
19
26
(
1980
).
12.
H.
Schwan
and
K.
Foster
,
Proc. IEEE
68
,
104
113
(
1980
).
13.
K.
Foster
and
H.
Schwan
,
CRC Crit. Rev. Biomed. Eng.
17
,
25
104
(
1989
).
14.
E.
Grant
,
R.
Sheppard
, and
G.
South
,
Dielectric Behaviour of Biological Molecules in Solution
(
Clarendon
,
Oxford
,
1978
).
15.
R.
Pethig
,
Dielectric and Electronic Properties of Biological Materials
(
Wiley
,
New York
,
1979
).
16.
S.
Grimnes
and
O.
Martinsen
,
Bioimpedance and Bioelectricity Basics
(
Academic
,
2008
).
17.
A.
Christ
,
A.
Klingenbock
,
T.
Samaras
,
C.
Goiceanu
, and
N.
Kuster
,
IEEE Trans. Microwave Theory Tech.
54
,
2188
2195
(
2006
).
18.
J.
Zhuang
,
W.
Ren
,
Y.
Jing
, and
J. F.
Kolb
,
IEEE Trans. Dielectr. Electr. Insul.
19
,
609
622
(
2012
).
19.
P.
Patel
and
G.
Markx
,
Enzyme Microb. Technol.
43
,
463
470
(
2008
).
20.
H.-L.
Gou
,
X.-B.
Zhang
,
N.
Bao
,
J.-J.
Xu
,
X.-H.
Xia
, and
H.-Y.
Chen
,
J. Chromatogr. A
1218
,
5725
5729
(
2011
).
21.
C.
Küttel
,
E.
Nascimento
,
N.
Demierre
,
T.
Silva
,
T.
Braschler
,
P.
Renaud
, and
A. G.
Oliva
,
Acta Trop.
102
,
63
68
(
2007
).
22.
S. Z.
Hua
and
T.
Pennell
,
Lab Chip
9
,
251
256
(
2009
).
23.
J.
Chen
,
Biomicrofluidics
5
,
014113
(
2011
).
24.
Y.
Qiu
,
R.
Liao
, and
X.
Zhang
,
Anal. Chem.
80
,
990
996
(
2008
).
25.
M.
Nikolic-Jaric
,
S. F.
Romanuik
,
G. A.
Ferrier
,
T.
Cabel
,
E.
Salimi
,
D. B.
Levin
,
G. E.
Bridges
, and
D. J.
Thomson
,
Biomicrofluidics
6
,
024117
(
2012
).
26.
U.
Lei
,
P.-H.
Sun
, and
R.
Pethig
,
Biomicrofluidics
5
,
044109
(
2011
).
27.
J.
Wu
,
Y.
Ben
,
D.
Battigelli
, and
H.-C.
Chang
,
Ind. Eng. Chem. Res.
44
,
2815
2822
(
2005
).
28.
J.
Wu
,
Y.
Ben
, and
H. C.
Chang
,
Microfluid. Nanofluid.
1
,
161
167
(
2005
).
29.
S.
Sengupta
,
D. A.
Battigelli
, and
H.-C.
Chang
,
Lab Chip
6
,
682
692
(
2006
).
30.
M.
Honda
,
A Guide to Measurement Technology and Technique
(
Agilent Technologies
,
USA
,
2009
).
31.
Y.
Polevaya
,
I.
Ermolina
,
M.
Schlesinger
,
B.-Z.
Ginzburg
, and
Y.
Feldman
,
Biochim. Biophys. Acta-Biomembr.
1419
,
257
271
(
1999
).
32.
K.
Asami
,
J. Non-Cryst. Solids
305
,
268
277
(
2002
).
33.
N.
Hager
 III
,
Rev. Sci. Instrum.
65
,
887
(
1994
).
34.
N.
Hager
 III
and
R.
Domszy
,
J. Appl. Phys.
96
,
5117
(
2004
).
35.
See supplementary material at http://dx.doi.org/10.1063/1.4737121 for additional information.
36.
R.
Pethig
,
Biomicrofluidics
4
,
022811
022835
(
2010
).
37.
P. R. C.
Gascoyne
,
X.-B.
Wang
,
Y.
Huang
, and
F. F.
Becker
,
IEEE Trans. Ind. Appl.
33
,
670
678
(
1997
).
38.
Y.
Kang
,
B.
Cetin
,
Z.
Wu
, and
D.
Li
,
Electrochim. Acta
54
,
1715
1720
(
2009
).
39.
A. C.
Sabuncu
,
J. A.
Liu
,
S. J.
Beebe
, and
A.
Beskok
,
Biomicrofluidics
4
,
021101
021107
(
2010
).
40.
S.
Park
,
Y.
Zhang
,
T.-H.
Wang
, and
S.
Yang
,
Lab Chip
11
,
2893
2900
(
2011
).
41.
S.
Park
,
M.
Koklu
, and
A.
Beskok
,
Anal. Chem.
81
,
2303
2310
(
2009
).
42.
I. F.
Cheng
,
V. E.
Froude
,
Y.
Zhu
,
H.-C.
Chang
, and
H.-C.
Chang
,
Lab Chip
9
,
3193
3201
(
2009
).
43.
Z.
Gagnon
,
J.
Mazur
, and
H. C.
Chang
,
Lab Chip
10
,
718
726
(
2010
).
44.
R.
Pethig
and
M. S.
Talary
,
IET Nanobiotechnol.
1
,
2
9
(
2007
).
45.
I.
Ermolina
,
Y.
Polevaya
, and
Y.
Feldman
,
Eur. Biophys. J.
29
,
141
145
(
2000
).
46.
P. R. C.
Gascoyne
,
R.
Pethig
,
J. P. H.
Burt
, and
F. F.
Becker
,
Biochim. Biophys. Acta-Biomembr.
1149
,
119
126
(
1993
).
47.
A.
Garner
,
G.
Chen
,
N.
Chen
,
V.
Sridhara
,
J.
Kolb
,
R.
Swanson
,
S.
Beebe
,
R.
Joshi
, and
K.
Schoenbach
,
Biochem. Biophys. Res. Commun.
362
,
139
144
(
2007
).
48.
A.
Salmanzadeh
,
H.
Kittur
,
M. B.
Sano
,
P. C.
Roberts
,
E. M.
Schmelz
, and
R. V.
Davalos
,
Biomicrofluidics
6
,
024104
(
2012
).
49.
L.
Wu
,
L.-Y. L.
Yung
, and
K.-M.
Lim
,
Biomicrofluidics
6
,
014113
(
2012
).
50.
F.
Yang
,
X.
Yang
,
H.
Jiang
,
P.
Bulkhaults
,
P.
Wood
,
W.
Hrushesky
, and
G.
Wang
,
Biomicrofluidics
4
,
013204
(
2010
).

Supplementary Material

You do not currently have access to this content.