Sepsis is an adverse systemic inflammatory response caused by microbial infection in blood. This paper reports a simple microfluidic approach for intrinsic, non-specific removal of both microbes and inflammatory cellular components (platelets and leukocytes) from whole blood, inspired by the invivo phenomenon of leukocyte margination. As blood flows through a narrow microchannel (20 × 20 µm), deformable red blood cells (RBCs) migrate axially to the channel centre, resulting in margination of other cell types (bacteria, platelets, and leukocytes) towards the channel sides. By using a simple cascaded channel design, the blood samples undergo a 2-stage bacteria removal in a single pass through the device, thereby allowing higher bacterial removal efficiency. As an application for sepsis treatment, we demonstrated separation of Escherichia coli and Saccharomyces cerevisiae spiked into whole blood, achieving high removal efficiencies of ∼80% and ∼90%, respectively. Inflammatory cellular components were also depleted by >80% in the filtered blood samples which could help to modulate the host inflammatory response and potentially serve as a blood cleansing method for sepsis treatment. The developed technique offers significant advantages including high throughput (∼1 ml/h per channel) and label-free separation which allows non-specific removal of any blood-borne pathogens (bacteria and fungi). The continuous processing and collection mode could potentially enable the return of filtered blood back to the patient directly, similar to a simple and complete dialysis circuit setup. Lastly, we designed and tested a larger filtration device consisting of 6 channels in parallel (∼6 ml/h) and obtained similar filtration performances. Further multiplexing is possible by increasing channel parallelization or device stacking to achieve higher throughput comparable to convectional blood dialysis systems used in clinical settings.

1.
D. C.
Angus
,
W. T.
Linde-Zwirble
,
J.
Lidicker
,
G.
Clermont
,
J.
Carcillo
, and
M. R.
Pinsky
,
Crit. Care Med.
29
(
7
),
1303
1310
(
2001
).
2.
J.
Cohen
,
Nature
420
(
6917
),
885
891
(
2002
).
3.
M.
Legrand
,
E.
Klijn
,
D.
Payen
, and
C.
Ince
,
J. Mol. Med.
88
(
2
),
127
133
(
2010
).
4.
S.
Harbarth
,
J.
Garbino
,
J.
Pugin
,
J. A.
Romand
,
D.
Lew
, and
D.
Pittet
,
Am. J. Med.
115
(
7
),
529
535
(
2003
).
5.
J.
Valles
,
J.
Rello
,
A.
Ochagavia
,
J.
Garnacho
,
M. A.
Alcala
, and
I.
Spanish Collaborative Grp
,
Chest
123
(
5
),
1615
1624
(
2003
).
6.
H. C.
Neu
,
Science
257
(
5073
),
1064
1073
(
1992
).
7.
K.
Edmond
and
A.
Zaidi
,
PLoS Med.
7
(
3
),
e1000213
(
2010
).
8.
T.
Rimmelé
and
J.
Kellum
,
Crit. Care
15
(
1
),
1
10
(
2011
).
9.
J. N.
Hoffmann
,
W. H.
Hartl
,
R.
Deppisch
,
E.
Faist
,
M.
Jochum
, and
D.
Inthorn
,
Kidney Int.
48
(
5
),
1563
1570
(
1995
).
10.
L.
Cole
,
R.
Bellomo
,
D.
Journois
,
P.
Davenport
,
I.
Baldwin
and
P.
Tipping
,
Intensive Care Med.
27
(
6
),
978
986
(
2001
).
11.
J.
Boldt
,
M.
Lenz
,
B.
Kumle
, and
M.
Papsdorf
,
Intensive Care Med.
24
(
2
),
147
151
(
1998
).
12.
W.
Druml
,
Kidney Int.
56
(
S72
),
S56
S61
(
1999
).
13.
O.
Moerer
,
A.
Schmid
,
M.
Hofmann
,
A.
Herklotz
,
K.
Reinhart
,
K.
Werdan
,
H.
Schneider
, and
H.
Burchardi
,
Intensive Care Med.
28
(
10
),
1440
1446
(
2002
).
14.
E. D.
Pratt
,
C.
Huang
,
B. G.
Hawkins
,
J. P.
Gleghorn
, and
B. J.
Kirby
,
Chem. Eng. Sci.
66
(
7
),
1508
1522
(
2010
).
15.
A.
Bhagat
,
H.
Bow
,
H.
Hou
,
S.
Tan
,
J.
Han
, and
C.
Lim
,
Med. Biol. Eng. Comput.
48
(
10
),
999
1014
(
2010
).
16.
H. W.
Hou
,
A. A. S.
Bhagat
,
W. C.
Lee
,
S.
Huang
,
J.
Han
, and
C. T.
Lim
,
Micromachines
2
(
3
),
319
343
(
2011
).
17.
Z. G.
Wu
,
B.
Willing
,
J.
Bjerketorp
,
J. K.
Jansson
, and
K.
Hjort
,
LabChip
9
(
9
),
1193
1199
(
2009
).
18.
A. J.
Mach
and
D.
Di Carlo
,
Biotechnol. Bioeng.
107
(
2
),
302
311
(
2010
).
19.
N.
Xia
,
T.
Hunt
,
B.
Mayers
,
E.
Alsberg
,
G.
Whitesides
,
R.
Westervelt
, and
D.
Ingber
,
Biomed. Microdevices
8
(
4
),
299
308
(
2006
).
20.
C. W.
Yung
,
J.
Fiering
,
A. J.
Mueller
, and
D. E.
Ingber
,
LabChip
9
(
9
),
1171
1177
(
2009
).
21.
H. L.
Goldsmith
,
G. R.
Cokelet
, and
P.
Gaehtgens
,
Am. J. Physiol.
257
(
3
),
H1005
H1015
(
1989
).
22.
A. R.
Pries
,
T. W.
Secomb
, and
P.
Gaehtgens
,
Cardiovasc. Res.
32
(
4
),
654
667
(
1996
).
23.
E.
Fiebig
,
K.
Ley
, and
K. E.
Arfors
,
Int. J. Microcirc.: Clin. Exp.
10
(
2
),
127
144
(
1991
).
24.
H. L.
Goldsmith
and
S.
Spain
,
Microvasc. Res.
27
(
2
),
204
222
(
1984
).
25.
S. S.
Shevkoplyas
,
T.
Yoshida
,
L. L.
Munn
, and
M. W.
Bitensky
,
Anal. Chem.
77
(
3
),
933
937
(
2005
).
26.
A.
Jain
and
L. L.
Munn
,
PLoS ONE
4
(
9
),
e7104
(
2009
).
27.
A.
Jain
and
L. L.
Munn
,
Lab Chip
11
(
17
),
2941
2947
(
2011
).
28.
H. W.
Hou
,
A. A. S.
Bhagat
,
A. G. L.
Chong
,
P.
Mao
,
K. S. W.
Tan
,
J. Y.
Han
, and
C. T.
Lim
,
LabChip
10
(
19
),
2605
2613
(
2010
).
29.
P.
Aarts
,
S.
van den Broek
,
G.
Prins
,
G.
Kuiken
,
J.
Sixma
, and
R.
Heethaar
,
Arterioscler., Thromb.,Vasc. Biol.
8
(
6
),
819
824
(
1988
).
30.
R.
Zhao
,
M. V.
Kameneva
, and
J. F.
Antaki
,
Biorheology
44
(
3
),
161
177
(
2007
).
31.
C.
Yeh
and
E. C.
Eckstein
,
Biophys. J.
66
(
5
),
1706
1716
(
1994
).
32.
R.
Zhao
,
J. N.
Marhefka
,
F. J.
Shu
,
S. J.
Hund
,
M. V.
Kameneva
, and
J. F.
Antaki
,
Ann. Biomed. Eng.
36
(
7
),
1130
1141
(
2008
).
33.
V.
Turitto
and
H.
Weiss
,
Science
207
(
4430
),
541
543
(
1980
).
34.
T.
AlMomani
,
H. S.
Udaykumar
,
J. S.
Marshall
, and
K. B.
Chandran
,
Ann. Biomed. Eng.
36
(
6
),
905
920
(
2008
).
35.
J. C.
McDonald
and
G. M.
Whitesides
,
Acc. Chem. Res.
35
(
7
),
491
499
(
2002
).
36.
M.
Faivre
,
M.
Abkarian
,
K.
Bickraj
, and
H. A.
Stone
,
Biorheology
43
(
2
),
147
159
(
2006
).
37.
R.
Lima
,
T.
Ishikawa
,
Y.
Imai
,
M.
Takeda
,
S.
Wada
, and
T.
Yamaguchi
,
J. Biomech.
41
(
10
),
2188
2196
(
2008
).
38.
See supplementary material at http://dx.doi.org/10.1063/1.4710992 for additional figures on device characterization and multiplexing system through channel parallelisation and stacking.
39.
R.
Lima
,
S.
Wada
,
S.
Tanaka
,
M.
Takeda
,
T.
Ishikawa
,
K.-i.
Tsubota
,
Y.
Imai
, and
T.
Yamaguchi
,
Biomed. Microdevices
10
(
2
),
153
167
(
2008
).
40.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
,
Proc. Natl. Acad. Sci. U.S.A.
104
(
48
),
18892
18897
(
2007
).
41.
A. A. S.
Bhagat
,
H. W.
Hou
,
L. D.
Li
,
J. Y.
Han
, and
C. T.
Lim
,
LabChip
11
(
11
),
1870
1878
(
2011
).
42.
E. J.
Lim
,
T. J.
Ober
,
J. F.
Edd
,
G. H.
McKinley
, and
M.
Toner
,
LabChip
(
2012
).
43.
H.
Zhao
,
E. S. G.
Shaqfeh
, and
V.
Narsimhan
,
Phys. Fluids
24
(
1
),
011902
011921
(
2012
).
44.
C.
Yeh
and
E. C.
Eckstein
,
Biophys. J.
66
(
5
),
1706
1716
(
1994
).
45.
R.
Zhou
and
H.-C.
Chang
,
J. Colloid Interface Sci.
287
(
2
),
647
656
(
2005
).
46.
R.
Zhou
,
J.
Gordon
,
A. F.
Palmer
, and
H.-C.
Chang
,
Biotechnol. Bioeng.
93
(
2
),
201
211
(
2006
).
47.
D. A.
Fedosov
,
B.
Caswell
,
A. S.
Popel
, and
G. E.
Karniadakis
,
Microcirculation
17
(
8
),
615
628
(
2010
).
48.
G. W.
Schmid-Schönbein
,
K. L.
Sung
,
H.
Tözeren
,
R.
Skalak
, and
S.
Chien
,
Biophys. J.
36
(
1
),
243
256
(
1981
).
49.
R. D.
Kamm
,
Annu. Rev. Fluid Mech.
34
(
1
),
211
232
(
2002
).
50.
C.
Sun
and
L. L.
Munn
,
Physica A
362
(
1
),
191
196
(
2006
).
51.
M. J.
Pearson
and
H. H.
Lipowsky
,
Microcirculation
11
(
3
),
295
306
(
2004
).
52.
O. K.
Baskurt
and
H. J.
Meiselman
,
Semin. Thromb. Hemost.
29
(
05
),
435
450
(
2003
).
53.
J. B.
Freund
,
Phys. Fluids
19
(
2
),
13
(
2007
).
54.
A.
Boulbitch
,
B.
Quinn
, and
D.
Pink
,
Phys. Rev. Lett.
85
(
24
),
5246
(
2000
).
55.
K. C.
Huang
,
R.
Mukhopadhyay
,
B.
Wen
,
Z.
Gitai
, and
N. S.
Wingreen
,
Proc. Natl. Acad. Sci.
105
(
49
),
19282
19287
(
2008
).
56.
I.
Dulinska
,
M.
Targosz
,
W.
Strojny
,
M.
Lekka
,
P.
Czuba
,
W.
Balwierz
, and
M.
Szymonski
,
J. Biochem. Biophys. Methods
66
(
1–3
),
1
11
(
2006
).
57.
T.
Randall
 et al,
Nanotechnology
22
(
11
),
115101
(
2011
).
58.
L.
Sei-Young
 et al,
Nanotechnology
20
(
49
),
495101
(
2009
).
59.
M. A.
Pfaller
and
D. J.
Diekema
,
Clin. Microbiol. Rev.
20
(
1
),
133
163
(
2007
).
60.
A. E.
Smith
,
Z.
Zhang
,
C. R.
Thomas
,
K. E.
Moxham
, and
A. P. J.
Middelberg
,
Proc. Natl. Acad.Sci.
97
(
18
),
9871
9874
(
2000
).
61.
K. A.
Brown
,
S. D.
Brain
,
J. D.
Pearson
,
J. D.
Edgeworth
,
S. M.
Lewis
, and
D. F.
Treacher
,
Lancet
368
(
9530
),
157
169
(
2006
).
62.
A. C.
Muller Kobold
,
J. E.
Tulleken
,
J. G.
Zijlstra
,
W.
Sluiter
,
J.
Hermans
,
C. G. M.
Kallenberg
, and
J. W.
Cohen Tervaert
,
Intensive Care Med.
26
(
7
),
883
892
(
2000
).
63.
M. J.
Rosenbluth
,
W. A.
Lam
, and
D. A.
Fletcher
,
Lab Chip
8
(
7
),
1062
1070
(
2008
).
64.
D.
De Backer
,
J.
Creteur
,
J.-C.
Preiser
,
M.-J.
Dubois
, and
J.-L.
Vincent
,
Am. J. Respir. Crit. Care Med.
166
(
1
),
98
104
(
2002
).
65.
M.
Levi
,
Hematology
10
(
1
),
129
131
(
2005
).
66.
S.
Yang
,
A.
Undar
, and
J. D.
Zahn
,
Lab Chip
6
(
7
),
871
880
(
2006
).
67.
C.
Blattert
,
R.
Jurischka
,
I.
Tahhan
,
A.
Schoth
,
P.
Kerth
, and
W.
Menz
, presented at the Engineering in Medicine and Biology Society, 2004. IEMBS ‘04. 26th Annual International Conference of the IEEE,
2004
.
68.
R. D.
Jaggi
,
R.
Sandoz
, and
C. S.
Effenhauser
,
Microfluid. Nanofluid.
3
(
1
),
47
53
(
2007
).

Supplementary Material

You do not currently have access to this content.