Increasingly, invitro culture of adherent cell types utilizes three-dimensional (3D) scaffolds or aggregate culture strategies to mimic tissue-like, microenvironmental conditions. In parallel, new flow cytometry-based technologies are emerging to accurately analyze the composition and function of these microtissues (i.e., large particles) in a non-invasive and high-throughput way. Lacking, however, is an accessible platform that can be used to effectively sort or purify large particles based on analysis parameters. Here we describe a microfluidic-based, electromechanical approach to sort large particles. Specifically, sheath-less asymmetric curving channels were employed to separate and hydrodynamically focus particles to be analyzed and subsequently sorted. This design was developed and characterized based on wall shear stress, tortuosity of the flow path, vorticity of the fluid in the channel, sorting efficiency and enrichment ratio. The large particle sorting device was capable of purifying fluorescently labelled embryoid bodies (EBs) from unlabelled EBs with an efficiency of 87.3% ± 13.5%, and enrichment ratio of 12.2 ± 8.4 (n = 8), while preserving cell viability, differentiation potential, and long-term function.

1.
D. T.
Leong
,
W. K.
Nah
,
A.
Gupta
,
D. W.
Hutmacher
, and
M. A.
Woodruff
,
Curr. Drug Discovery Technol.
5
,
319
(
2008
).
2.
B. W.
Phillips
,
R.
Horne
,
T. S.
Lay
,
W. L.
Rust
,
T. T.
Teck
, and
J. M.
Crook
,
J. Biotechnol.
138
,
24
(
2008
).
3.
R. L.
Carpenedo
,
A. M.
Bratt-Leal
,
R. A.
Marklein
,
S. A.
Seaman
,
N. J.
Bowen
,
J. F.
McDonald
, and
T. C.
McDevitt
,
Biomaterials
30
,
2507
(
2009
).
4.
J. P.
Stegemann
and
R. M.
Nerem
,
Exp. Cell Res.
283
,
146
(
2003
).
5.
K. L.
Schmeichel
and
M. J.
Bissell
,
J. Cell Sci.
116
,
2377
(
2003
).
6.
H. J.
Kong
and
D. J.
Mooney
,
Nat. Rev. Drug Discovery
6
,
455
(
2007
).
7.
D. S.
Benoit
,
M. P.
Schwartz
,
A. R.
Durney
, and
K. S.
Anseth
,
Nature Mater.
7
,
816
(
2008
).
8.
S. R.
Khetani
and
S. N.
Bhatia
,
Curr. Opin. Biotechnol.
17
,
524
(
2006
).
9.
B. D.
Ratner
and
S. J.
Bryant
,
Annu. Rev. Biomed. Eng.
6
,
41
(
2004
).
10.
D. G.
Buschke
, J. M. Squirrell, H. Ansari, M. A. Smith, C. T. Rueden, J. C. Williams, G. E. Lyons, T. J. Kamp, K. W. Eliceiri, and B. M. Ogle,
Microsc. Microanal.
17
,
540
(
2011
).
11.
A. A.
Chen
,
G. H.
Underhill
, and
S. N.
Bhatia
,
Integr. Biol. (Cambridge)
2
,
517
(
2010
).
12.
L. A.
Fernandez
,
E. W.
Hatch
,
B.
Armann
,
J. S.
Odorico
,
D. A.
Hullett
,
H. W.
Sollinger
, and
M. S.
Hanson
,
Transplantation
80
,
729
(
2005
).
13.
R. T.
Stovel
,
J. Histochem. Cytochem.
25
,
813
(
1977
).
14.
W. P.
Hansen
, U. S. Patent, Union Biometrica, Inc., USA (1999).
15.
L.
Johansson
,
F.
Nikolajeff
,
S.
Johansson
, and
S.
Thorslund
,
Anal. Chem.
81
,
5188
(
2009
).
16.
D.
Huh
,
J. H.
Bahng
,
Y.
Ling
,
H. H.
Wei
,
O. D.
Kripfgans
,
J. B.
Fowlkes
,
J. B.
Grotberg
, and
S.
Takayama
,
Anal. Chem.
79
,
1369
(
2007
).
17.
D.
Holmes
,
M. E.
Sandison
,
N. G.
Green
, and
H.
Morgan
,
IEE Proc.: Nanobiotechnol.
152
,
129
(
2005
).
18.
H. A.
Nieuwstadt
,
R.
Seda
,
D. S.
Li
,
J. B.
Fowlkes
, and
J. L.
Bull
,
Biomed. Microdevices
13
,
97
(
2011
).
19.
H.
Wei
,
B. H.
Chueh
,
H.
Wu
,
E. W.
Hall
,
C. W.
Li
,
R.
Schirhagl
,
J. M.
Lin
, and
R. N.
Zare
,
Lab Chip
11
,
238
(
2011
).
20.
R. W.
Applegate
, Jr.
,
D. W.
Marr
,
J.
Squier
, and
S. W.
Graves
,
Opt. Express
17
,
16731
(
2009
).
21.
P. B.
Lillehoj
,
H.
Tsutsui
,
B.
Valamehr
,
H.
Wu
, and
C. M.
Ho
,
Lab Chip
10
,
1678
(
2010
).
22.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18892
(
2007
).
24.
D. R.
Gossett
,
W. M.
Weaver
,
A. J.
Mach
,
S. C.
Hur
,
H. T. K.
Tse
,
W.
Lee
,
H.
Amini
, and
D.
Di Carlo
,
Anal. Bioanal. Chem.
397
,
3249
(
2010
).
25.
N. A.
Stathopoulos
and
J. D.
Hellums
,
Biotechnol. Bioeng.
27
,
1021
(
1985
).
26.
D. C.
Augenstein
,
A. J.
Sinskey
, and
D. I.
Wang
,
Biotechnol. Bioeng.
13
,
409
(
1971
).
27.
A.
McQueen
,
E.
Meilhoc
, and
J. E.
Bailey
,
Biotechnol. Lett.
9
,
831
(
1987
).
28.
A.
Lumholdt
, “Numerical investigations of macroscopic particle dynamics in microflows,” Dissertation (Riso National Laboratory, Roskilde, Denmark, 2001).
29.
A. F.
Fortes
,
D. D.
Joseph
, and
T. S.
Lundgren
,
J. Fluid Mech.
177
,
467
(
1987
).
30.
See supplementary material at http://dx.doi.org/10.1063/1.3692765 for a description of alternative designs.
31.
T. J.
Collins
,
BioTechniques
43
,
25
(
2007
).
32.
P. B.
Howell
, Jr.
,
J. P.
Golden
,
L. R.
Hilliard
,
J. S.
Erickson
,
D. R.
Mott
, and
F. S.
Ligler
,
Lab Chip
8
,
1097
(
2008
).
33.
See http://loci.wisc.edu/software/wiscscan. This website provides a comprehensive description of Wiscan software. Wiscan is a custom-made flexible package used to operate multiphoton microscopy systems and multiphoton flow systems.

Supplementary Material

You do not currently have access to this content.