Fast detection of waterborne pathogens is important for securing the hygiene of drinking water. Detection of pathogens in water at low concentrations and minute quantities demands rapid and efficient enrichment methods in order to improve the signal-to-noise ratio of bio-sensors. We propose and demonstrate a low cost and rapid method to fabricate a multi-layer polymeric micro-sieve using conventional lithography techniques. The micro-fabricated micro-sieves are made of several layers of SU-8 photoresist using multiple coating and exposure steps and a single developing process. The obtained micro-sieves have good mechanical properties, smooth surfaces, high porosity (≈40%), and narrow pore size distribution (coefficient of variation < 3.33%). Sample loading and back-flushing using the multi-layer micro-sieve resulted in more than 90% recovery of pathogens, which showed improved performance than current commercial filters.

1.
C.
Peskoller
,
R.
Niessner
, and
M.
Seidel
,
Anal. Bioanal. Chem.
393
,
399
(
2009
).
2.
P. N.
Floriano
,
N.
Christodoulides
,
D.
Romanovicz
,
B.
Bernard
,
G. W.
Simmons
,
M.
Cavell
, and
J. T.
McDevitt
,
Biosens. Bioelectron.
20
,
2079
(
2005
).
3.
R. T.
Noble
and
S. B.
Weisberg
,
J. Water Health
3
,
381
(
2005
), http://www.iwaponline.com/jwh/003/jwh0030381.htm.
4.
W.
Quintero-Betancourt
,
E. R.
Peele
, and
J. B.
Rose
,
J. Microbiol. Methods
49
,
209
(
2002
).
5.
L.
Yang
and
R.
Bashir
,
Biotechnol. Adv.
26
,
135
(
2008
).
6.
A.
Dubitsky
,
D.
DeCollibus
, and
G. A.
Ortolano
,
J. Biochem. Biophys. Methods
51
,
47
(
2002
).
7.
T.
Wohlsen
,
J.
Bates
,
B.
Gray
, and
M.
Katouli
,
Appl. Environ. Microbiol.
70
,
2318
(
2004
).
8.
S.
Kuiper
,
C. J. M.
Van Rijn
,
W.
Nijdam
, and
M. C.
Elwenspoek
,
J. Membr. Sci.
150
,
1
(
1998
).
9.
C. J. M.
Rijn
,
G. J.
Veldhuis
, and
S.
Kuiper
,
Nanotechnology
9
,
343
(
1998
).
10.
K.
Han
,
W.
Xu
,
A.
Ruiz
,
P.
Ruchhoeft
, and
S.
Chellam
,
J. Membr. Sci.
249
,
193
(
2005
).
11.
T.
Yanagishita
,
K.
Nishio
, and
H.
Masuda
,
J. Vac. Sci. Technol. B
25
,
L35
(
2007
).
12.
I.
Saxena
,
A.
Agrawal
, and
S. S.
Joshi
,
J. Micromech. Microeng.
19
,
025025
(
2009
).
13.
M.
Gironès
,
I. J.
Akbarsyah
,
W.
Nijdam
,
C. J. M.
Van Rijn
,
H. V.
Jansen
,
R. G. H.
Lammertink
, and
M.
Wessling
,
J. Membr. Sci.
283
,
411
(
2006
).
14.
L.
Chen
,
M. E.
Warkiani
,
H. B.
Liu
, and
H. Q.
Gong
,
J. Micromech. Microeng.
20
,
075005
(
2010
).
15.
A.
Campo
and
C.
Greiner
,
J. Micromech. Microeng.
17
,
R81
(
2007
).
16.
A.
Mata
,
A.
Fleischman
, and
S.
Roy
,
J. Micromech. Microeng.
16
,
276
(
2006
).
17.
K.
Kim
,
D. S.
Park
,
H. M.
Lu
,
W.
Che
,
J. B.
Lee
, and
C. H.
Ahn
,
J. Micromech. Microeng.
14
,
597
(
2004
).
18.
Y. J.
Chang
,
K.
Mohseni
, and
V. M.
Bright
,
Sens. Actuators, A
136
(
2
),
546
(
2007
).
19.
C.
Lin
,
G.
Lee
,
B.
Chang
, and
G.
Chang
,
J. Micromech. Microeng.
12
,
590
(
2002
).
20.
M. E.
Warkiani
,
L.
Chen
,
C. P.
Lou
,
H. B.
Liu
,
R.
Zhang
, and
H. Q.
Gong
,
J. Membr. Sci.
369
,
560
(
2011
).
21.
G.
Voskerician
,
M. S.
Shive
,
R. S.
Shawgo
,
H.
Von Recum
,
J. M.
Anderson
,
M. J.
Cima
, and
R.
Langer
,
Biomaterials
24
,
1959
(
2003
).
22.
V.
Ramachandran
and
H. S.
Fogler
,
J. Fluid Mech.
385
,
129
(
1999
).
23.
H.
Karim
,
S.
Sylvain
,
L.
Laurence
,
H.
Lucien
, and
C.
Henry-Michel
,
Water Sci. Technol.
62
(
1
),
196
(
2010
).
24.
E. C.
Nieminski
,
F.
Schaefer
 3rd
, and
J. E.
Ongerth
,
Appl. Environ. Microbiol.
61
(
5
),
1714
(
1995
), http://aem.asm.org/cgi/content/abstract/61/5/1714.
25.
C. J. M.
van Rijn
,
Nano and Micro Engineered Membrane Technology
(
Elsevier
,
Amsterdam
,
2004
), Vol.
10
.
26.
H.
Becker
and
L. E.
Locascio
,
Talanta
56
(
2
),
267
(
2002
).
27.
D.
Wright
,
B.
Rajalingam
,
J.
Kar
,
S.
Selvarasah
,
Y.
Ling
,
J.
Yeh
,
R.
Langer
,
M.
Dokmeci
, and
A.
Khademhosseini
,
J. Biomed. Mater. Res. Part A
85
,
530
(
2008
).
28.
J.
Li
,
C.
Liu
,
X.
Dai
,
H.
Chen
,
Y.
Liang
,
H.
Sun
,
H.
Tian
, and
X.
Ding
,
J. Micromech. Microeng.
18
,
095021
(
2008
).
You do not currently have access to this content.