In this paper we present a new fabrication method that combines for the first time popular SU-8 technology and PerMX dry-photoresist lamination for the manufacturing of high aspect ratio three-dimensional multi-level microfluidic networks. The potential of this approach, which further benefits from wafer-level manufacturing and accurate alignment of fluidic levels, is demonstrated by a highly integrated three-level microfluidic chip. The hereby achieved network complexity, including 24 fluidic vias and 16 crossing points of three individual microchannels on less than 13 mm2 chip area, is unique for SU-8 based fluidic networks. We further report on excellent process compatibility between SU-8 and PerMX dry-photoresist which results in high interlayer adhesion strength. The tight pressure sealing of a fluidic channel (0.5 MPa for 1 h) is demonstrated for 150 μm narrow SU-8/PerMX bonding interfaces.

1.
A. W.
Martinez
,
S. T.
Phillips
, and
G.
Whitesides
,
Proc. Natl. Acad. Sci. USA
105
,
19606
(
2008
).
2.
H.
Tani
,
K.
Maehana
, and
T.
Kamidate
,
Anal. Chem.
76
,
6693
(
2004
).
3.
D.
Therriault
,
S. R.
White
, and
J. A.
Lewis
,
Nat. Mater.
2
,
265
(
2003
).
4.
P. S.
Dittrich
and
A.
Manz
,
Nat. Rev. Drug Discov.
5
,
210
(
2006
).
5.
M. A.
Unger
,
H.-P.
Chou
,
T.
Thorsen
,
A.
Scherer
, and
S. R.
Quake
,
Science
288
,
113
(
2000
).
6.
Y.
Sun
,
Y. C.
Kwok
, and
N.-T.
Nguyen
,
J. Micromech. Microeng.
16
,
1681
(
2006
).
7.
B.
Bilenberg
,
T.
Nielsen
,
B.
Clausen
, and
A.
Kristensen
,
J. Micromech. Microeng.
14
,
814
(
2004
).
8.
C. W.
Tsao
,
L.
Hromada
,
J.
Liu
,
P.
Kumar
, and
D. L.
DeVoe
,
Lab Chip
7
,
499
(
2007
).
9.
F. J.
Blanco
,
M.
Agirregabiria
,
J.
Garcia
,
J.
Berganzo
,
M.
Tijero
,
M. T.
Arroyo
,
J. M.
Ruano
,
I.
Aramburu
, and
K.
Mayora
,
J. Micromech. Microeng.
14
,
1047
(
2004
).
10.
P.
Svasek
,
E.
Svasek
,
B.
Lendl
, and
M.
Vellekoop
,
Sens. Actuators A
115
,
591
(
2004
).
11.
S.
Tuomikoski
and
S.
Franssila
,
Sens. Actuators A
120
,
408
(
2005
).
12.
M.
Agirregabiria
,
F. J.
Blanco
,
J.
Berganzo
,
M. T.
Arroyo
,
A.
Fullaondo
,
K.
Mayora
, and
J. M.
Ruano-López
,
Lab Chip
5
,
545
(
2005
).
13.
J. R.
Anderson
,
D. T.
Chiu
,
R. J.
Jackman
,
O.
Cherniavskaya
,
J. C.
McDonald
,
H.
Wu
,
S. H.
Whitesides
, and
G. M.
Whitesides
,
Anal. Chem.
72
,
3158
(
2000
).
14.
M.
Zhang
,
J.
Wu
,
L.
Wang
,
K.
Xiao
, and
W.
Wen
,
Lab Chip
10
,
1199
(
2010
).
15.
B.
Mosadegh
,
M.
Agarwal
,
Y.-S.
Torisawa
, and
S.
Takayama
,
Lab Chip
10
,
1983
(
2010
).
16.
Y.
Zheng
,
W.
Dai
,
D.
Ryan
, and
H.
Wu
,
Biomicrofluidics
4
,
036504
(
2010
).
17.
K.-S.
Yun
and
E.
Yoon
,
Lab Chip
8
,
245
(
2008
).
18.
H. A.
Reed
,
C. E.
White
,
V.
Rao
,
S. A. B.
Allen
,
C. L.
Henderson
, and
P. A.
Kohl
,
J. Micromech. Microeng.
11
,
733
(
2001
).
19.
S.
Metz
,
S.
Jiguet
,
A.
Bertsch
, and
Ph.
Renaud
,
Lab Chip
4
,
114
(
2004
).
20.
P.
Abgrall
,
Ch.
Lattes
,
V.
Conédéra
,
X.
Dollat
,
S.
Colin
, and
A. M.
Gué
,
J. Micromech. Microeng.
16
,
113
(
2006
).
21.
U.
Stöhr
,
P.
Vulto
,
P.
Hoppe
,
G.
Urban
, and
H.
Reinecke
,
J. Micro/Nanolith. MEMS MOEMS
7
,
033009
(
2008
).
22.
K.
Kalkandjiev
,
L.
Riegger
,
D.
Kosse
,
M.
Welsche
,
L.
Gutzweiler
,
R.
Zengerle
, and
P.
Koltay
,
J. Micromech. Microeng.
21
,
025008
(
2011
).
23.
H.
Lorenz
,
M.
Despont
,
N.
Fahrni
,
N.
Labiance
,
P.
Renaud
, and
P.
Vettiger
,
J. Micromech. Microeng.
7
,
121
(
1997
).
24.
K. Y.
Lee
,
N.
LaBianca
, and
S. A.
Rishton
,
J. Vac. Sci. Technol. B
13
,
3012
(
1995
).
25.
G.
Voskerician
,
M. S.
Shive
,
R. S.
Shawgo
,
H.
v. Recum
,
J. M.
Anderson
,
M. J.
Cima
, and
R.
Langer
,
Biomaterials
24
,
1959
(
2003
).
26.
N.
Chronis
and
L. P.
Lee
,
J. Microelectromech. Syst.
14
,
857
(
2005
).
27.
M. G.
Jenke
,
C.
Schreiter
,
G. M.
Kim
,
H.
Vogel
, and
J.
Brugger
,
Microfluid. Nanofluid.
3
,
189
(
2007
).
28.
M.
Stangegaard
,
Z.
Wang
,
J. P.
Kutter
,
M.
Dufva
, and
A.
Wolff
,
Mol. BioSyst.
2
,
421
(
2006
).
29.
R.
Marie
,
S.
Schmid
,
A.
Johansson
,
L.
Ejsing
,
M.
Nordström
,
D.
Häflinger
,
C. B. V.
Christensen
,
A.
Boisen
, and
M.
Dufva
,
Biosens. Bioelectron.
21
,
1327
(
2006
).
30.
G.
Kotzar
,
M.
Freas
,
P.
Abel
,
A.
Fleischman
,
S.
Roy
,
C.
Zorman
,
J. M.
Moran
, and
J.
Melzak
,
Biomaterials
23
,
2737
(
2002
).
31.
A.
Altuna
,
G.
Gabriel
,
L. M.
de la Prida
,
M.
Tijero
,
A.
Guimerá
,
J.
Berganzo
,
R.
Salido
,
R.
Villa
, and
L. J.
Fernández
,
J. Micromech. Microeng.
20
,
064014
(
2010
).
32.
F.
Walther
,
P.
Davydovskaya
,
S.
Zürcher
,
M.
Kaiser
,
H.
Herberg
,
A. M.
Gigler
, and
R. W.
Stark
,
J. Micromech. Microeng.
17
,
524
(
2007
).
33.
M.
Nordström
,
R.
Marie
,
M.
Calleja
, and
A.
Boisen
,
J. Micromech. Microeng.
14
,
1614
(
2004
).
34.
S. L.
Tao
,
K. C.
Popat
,
J. J.
Norman
, and
T. A.
Desai
,
Langmuir
24
,
2631
(
2008
).
35.
A.
Deepu
,
V. V.
Sai
, and
S.
Mukherji
,
J. Mater Sci. Mater. Med.
20
,
25
(
2009
).
36.
K.-Y.
Hwang
,
C.-S.
Park
,
J.-H.
Kim
,
K.-Y.
Suh
,
E.-C.
Cho
, and
N.
Hih
,
J. Micromech. Microeng.
20
,
117001
(
2010
).
37.
H.
Kim
and
K.
Najafi
,
J. Microelectromech. Syst.
14
,
1347
(
2005
).
38.
M. W.
Toepke
and
D. J.
Beebe
,
Lab Chip
6
,
1484
(
2006
).
39.
M.
Sadeghi
,
H.
Kim
, and
K.
Najafi
, in
Proceedings of the IEEE Conference on Micro-Electro-Mechanical Systems
, Hong Kong S.A.R., China, 24–28 January
2010
, p.
15
18
.
You do not currently have access to this content.