Bio-inspired designs can provide an answer to engineering problems such as swimming strategies at the micron or nano-scale. Scientists are now designing artificial micro-swimmers that can mimic flagella-powered swimming of micro-organisms. In an application such as lab-on-a-chip in which micro-object manipulation in small flow geometries could be achieved by micro-swimmers, control of the swimming direction becomes an important aspect for retrieval and control of the micro-swimmer. A bio-inspired approach for swimming direction reversal (a flagellum bearing mastigonemes) can be used to design such a system and is being explored in the present work. We analyze the system using a computational framework in which the equations of solid mechanics and fluid dynamics are solved simultaneously. The fluid dynamics of Stokes flow is represented by a 2D Stokeslets approach while the solid mechanics behavior is realized using Euler-Bernoulli beam elements. The working principle of a flagellum bearing mastigonemes can be broken up into two parts: (1) the contribution of the base flagellum and (2) the contribution of mastigonemes, which act like cilia. These contributions are counteractive, and the net motion (velocity and direction) is a superposition of the two. In the present work, we also perform a dimensional analysis to understand the underlying physics associated with the system parameters such as the height of the mastigonemes, the number of mastigonemes, the flagellar wave length and amplitude, the flagellum length, and mastigonemes rigidity. Our results provide fundamental physical insight on the swimming of a flagellum with mastigonemes, and it provides guidelines for the design of artificial flagellar systems.

1.
G.
Taylor
,
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
209
,
447
(
1951
).
2.
J.
Gray
and
G. J.
Hancock
,
J. Exp. Biol.
32
,
802
(
1955
).
3.
E. M.
Purcell
,
Am. J. Phys.
45
,
3
(
1977
).
4.
L. E.
Becker
,
S. A.
Koehler
, and
H. A.
Stone
,
J. Fluid Mech.
490
,
15
(
2003
).
5.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
,
Nature
437
,
862
(
2005
).
6.
E.
Lauga
and
T. R.
Powers
,
Rep. Prog. Phys.
72
,
096601
36
(
2009
).
7.
C.
Brennen
and
H.
Winet
,
Annu. Rev. Fluid Mech.
9
,
339
(
1977
).
8.
P.
Tierno
,
R.
Golestanian
,
I.
Pagonabarraga
, and
F.
Sagues
,
J. Phys. Chem. B
112
,
16525
(
2008
).
9.
A.
Ghosh
and
P.
Fischer
,
Nano Lett.
9
,
2243
(
2009
).
10.
J. J.
Abbott
,
K. E.
Peyer
,
M. C.
Lagomarsino
,
L.
Zhang
,
L.
Dong
,
I. K.
Kaliakatsos
, and
B. J.
Nelson
,
Int. J. Rob. Res.
28
,
1434
(
2009
).
11.
S. N.
Khaderi
,
M. G. H. M.
Baltussen
,
P. D.
Anderson
,
D.
Ioan
,
J. M. J.
den Toonder
, and
P. R.
Onck
,
Phys. Rev. E
79
,
046304
(
2009
).
12.
S. N.
Khaderi
,
C. B.
Craus
,
J.
Hussong
,
N.
Schorr
,
J.
Belardi
,
J.
Westerweel
,
O.
Prucker
,
J.
Ruhe
,
J. M. J.
den Toonder
, and
P. R.
Onck
,
Lab Chip
11
,
2002
(
2011
).
13.
J.
den Toonder
,
F.
Bos
,
D.
Broer
,
L.
Filippini
,
M.
Gillies
,
J.
de Goede
,
T.
Mol
,
M.
Reijme
,
W.
Talen
,
H.
Wilderbeek
,
V.
Khatavkar
, and
P.
Anderson
,
Lab Chip
8
,
533
(
2008
).
14.
M. E. J.
Holwill
and
M. A.
Sleigh
,
J. Exp. Biol.
47
,
267
(
1967
).
15.
D. M.
Cahill
,
M.
Cope
, and
A. R.
Hardham
,
Protoplasma
194
,
18
(
1996
).
16.
C.
Brennen
,
J. Mechanochem. Cell Motil.
3
,
207
(
1975
).
17.
S.
Kobayashi
,
R.
Watanabe
,
T.
Oiwa
, and
H.
Morikawa
,
J. Biomech. Sci. Eng.
4
,
11
(
2009
).
18.
L. J.
Fauci
,
Am. Zool.
36
,
599
(
1996
).
19.
M. A.
Sleigh
,
Protoplasma
164
,
45
(
1991
).
20.
D. M.
Woolley
,
Biol. Rev.
85
,
453
(
2010
).
22.
J. J. L.
Higdon
,
J. Fluid Mech.
90
,
685
(
1979
).
23.
C.
Pozrikidis
,
A Practical Guide to Boundary-Element Methods with the Software Library BEMLIB
(
Chapman & Hall/CRC
,
Boca Raton
, FL,
2002
).
24.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer
,
New York
,
1991
).
25.
S. N.
Khaderi
and
P. R.
Onck
, “
Implicitly-coupled finite element/boundary element method for the fluid-structure interaction of magnetic artificial cilia
” (unpublished).
26.
J.
Lighthill
,
SIAM Rev.
18
,
161
(
1976
).
27.
R. D.
Dresdner
,
D. F.
Katz
, and
S. A.
Berger
,
J. Fluid Mech.
97
,
591
(
1980
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.3608240 for an animation of the swept-area by flexible and rigid mastigonemes.
29.
M. A.
Sleigh
,
Metachronism of Cilia of Metazoa, Cilia and Flagella
(
Academic
,
London
1974
).
30.
S. N.
Khaderi
,
M. G. H. M.
Baltussen
,
P. D.
Anderson
,
J. M. J.
den Toonder
, and
P. R.
Onck
,
Phys. Rev. E
82
,
027302
(
2010
).
31.
R.
Annabattula
,
W.
Huck
, and
P.
Onck
,
J. Mech. Phys. Solids
58
,
447
(
2010
).
32.
R. D.
Cook
,
D. S.
Malkus
,
M. E.
Plesha
, and
R. J.
Witt
,
Concepts and Applications of Finite Element Analysis
(
John Wiley & Sons, New York
,
2002
).

Supplementary Material

You do not currently have access to this content.