Capillary wave phenomena are challenging to study, especially for microfluidics where the wavelengths are short, the frequencies are high, and the frequency distribution is rarely confined to a narrow range, let alone a single frequency. Those that have been studying Faraday capillary waves generated by vertical oscillation have chosen to work at larger scales and at low frequencies as a solution to this problem, trading simplicity in measurement for issues with gravity, boundary conditions, and the fidelity of the subharmonic capillary wave motion. Laser Doppler vibrometry using a Mach–Zehnder interferometer is an attractive alternative: The interface’s motion can be characterized at frequencies up to 40 MHz and displacements of as little as a few tens of picometers.

1.
M.
Faraday
,
Philos. Trans. R. Soc. London
121
,
299
(
1831
).
2.
J.
Miles
and
D.
Henderson
,
Annu. Rev. Fluid Mech.
22
,
143
(
1990
).
3.
T.
Benjamin
and
F.
Ursell
,
Proc. R. Soc. London, Ser. A
225
,
505
(
1954
).
4.
5.
A.
Pushkarev
and
V.
Zakharov
,
Phys. Rev. Lett.
76
,
3320
(
1996
).
6.
D.
Snouck
,
M.
Westra
, and
W.
van de Water
,
Phys. Fluids
21
,
025102
(
2009
).
7.
E.
Bosch
and
W.
van de Water
,
Phys. Rev. Lett.
70
,
3420
(
1993
).
8.
C.
Huepe
,
Y.
Ding
,
P.
Umbanhowar
, and
M.
Silber
,
Phys. Rev. E
73
,
016310
(
2006
).
9.
C.
Topaz
,
J.
Porter
, and
M.
Silber
,
Phys. Rev. E
70
,
066206
(
2004
).
10.
S.
Residori
,
R.
Berthet
,
B.
Roman
, and
S.
Fauve
,
Phys. Rev. Lett.
88
,
024502
(
2001
).
11.
B.
Vukasinovic
,
M.
Smith
, and
A.
Glezer
,
J. Fluid Mech.
587
,
395
(
2007
).
12.
G.
Forde
,
J.
Friend
, and
T.
Williamson
,
Appl. Phys. Lett.
89
,
064105
(
2006
).
13.
J. R.
Friend
,
L. Y.
Yeo
,
D. R.
Arifin
, and
A.
Mechler
,
Nanotechnology
19
,
145301
(
2008
).
14.
A.
Qi
,
L. Y.
Yeo
, and
J. R.
Friend
,
Phys. Fluids
20
,
074103
(
2008
).
15.
M.
Alvarez
,
L.
Yeo
, and
J.
Friend
,
Nanotechnology
19
,
455103
(
2008
).
16.
R.
Lang
,
J. Acoust. Soc. Am.
34
,
6
(
1962
).
17.
M.
Kurosawa
,
A.
Futami
, and
T.
Higuchi
, “
Characteristics of liquids atomization using surface acoustic wave
,”
1997 International Conference on Solid State Sensors and Actuators, TRANSDUCERS ’97
,
Chicago, IL
, Vol.
2
,
801
1997
.
18.
J.
Mir
,
J. Acoust. Soc. Am.
67
,
201
(
1980
).
19.
F.
Barreras
,
H.
Amaveda
, and
A.
Lozano
,
Exp. Fluids
33
,
405
(
2002
).
20.
G.
Falkovich
,
A.
Weinberg
,
P.
Denissenko
, and
S.
Lukaschuk
,
Nature (London)
435
,
1045
(
2005
).
21.
H.
Li
,
J.
Friend
, and
L.
Yeo
,
Phys. Rev. Lett.
101
,
084502
(
2008
).
22.
H.
Li
,
J.
Friend
,
L.
Yeo
,
A.
Dasvarma
, and
K.
Traianedes
,
Biomicrofluidics
3
,
034102
(
2009
).
23.
L. Y.
Yeo
and
J. R.
Friend
,
Biomicrofluidics
3
,
012002
(
2009
).
24.
A.
Darhuber
and
S.
Troian
,
Annu. Rev. Fluid Mech.
37
,
425
(
2005
).
25.
E.
Falcon
,
C.
Laroche
, and
S.
Fauve
,
Phys. Rev. Lett.
98
,
094503
(
2007
).
26.
G.
Wölk
,
M.
Dreyer
,
H.
Rath
, and
M.
Weislogel
,
J. Spacecr. Rockets
34
,
110
(
1997
).
27.
J.
Bell
and
S.
Rothberg
,
J. Sound Vib.
237
,
245
(
2000
).
28.
29.
R.
Holt
and
E.
Trinh
,
Phys. Rev. Lett.
77
,
1274
(
1996
).
30.
A.
Schawlow
and
C.
Townes
,
Phys. Rev.
112
,
1940
(
1958
).
31.
V.
Vali
,
R.
Krogstad
, and
R.
Moss
,
J. Appl. Phys.
37
,
580
(
1966
).
32.
A.
Michelson
and
E.
Morley
,
Am. J. Sci.
34
,
333
(
1887
).
33.
J.
Vignola
,
X.
Liu
,
S.
Morse
,
B.
Houston
,
J.
Bucaro
,
M.
Marcus
,
D.
Photiadis
, and
L.
Sekaric
,
Rev. Sci. Instrum.
73
,
3584
(
2002
).
34.
P.
Buchhave
,
W.
George
, Jr.
, and
J.
Lumley
,
Annu. Rev. Fluid Mech.
11
,
443
(
1979
).
36.
J.
Vanherzeele
,
S.
Vanlanduit
, and
P.
Guillaume
,
Opt. Lasers Eng.
45
,
742
(
2007
).
You do not currently have access to this content.