Accurately mimicking the complexity of microvascular systems calls for a technology which can accommodate particularly small sample volumes while retaining a large degree of freedom in channel geometry and keeping the price considerably low to allow for high throughput experiments. Here, we demonstrate that the use of surface acoustic wave driven microfluidics systems successfully allows the study of the interrelation between melanoma cell adhesion, the matrix protein collagen type I, the blood clotting factor von Willebrand factor (vWF), and microfluidic channel geometry. The versatility of the tool presented enables us to examine cell adhesion under flow in straight and bifurcated microfluidic channels in the presence of different protein coatings. We show that the addition of vWF tremendously increases (up to tenfold) the adhesion of melanoma cells even under fairly low shear flow conditions. This effect is altered in the presence of bifurcated channels demonstrating the importance of an elaborate hydrodynamic analysis to differentiate between physical and biological effects. Therefore, computer simulations have been performed along with the experiments to reveal the entire flow profile in the channel. We conclude that a combination of theory and experiment will lead to a consistent explanation of cell adhesion, and will optimize the potential of microfluidic experiments to further unravel the relation between blood clotting factors, cell adhesion molecules, cancer cell spreading, and the hydrodynamic conditions in our microcirculatory system.

1.
H.
Al-Mondhiry
,
Am. J. Hematol.
16
,
193
(
1984
).
2.
Z. M.
Ruggeri
,
J. N.
Orje
,
R.
Habermann
,
A. B.
Federici
, and
A. J.
Reininger
,
Blood
108
,
1903
(
2006
).
3.
A.
Lazo-Langner
,
G. D.
Goss
,
J. N.
Spaans
, and
M. A.
Rodger
,
J. Thromb. Haemostasis
5
,
729
(
2007
).
4.
C. P. W.
Klerk
,
S. M.
Smorenburg
,
H. -M.
Otten
,
A. W. A.
Lensing
,
M. H.
Prins
,
F.
Piovella
,
P.
Prandoni
,
M. M. E. M.
Bos
,
D. J.
Richel
,
G.
van Tienhoven
, and
H. R.
Büller
,
J. Clin. Oncol.
23
,
2130
(
2005
).
5.
P.
Prandoni
,
A.
Falanga
, and
A.
Piccioli
,
Lancet Oncol.
6
,
401
(
2005
).
6.
Z. M.
Ruggeri
and
T. S.
Zimmerman
,
Blood
71
,
830
(
1988
).
7.
K.
Hoffmeister
,
T.
Felbinger
,
H.
Falet
,
C.
Denis
,
W.
Bergmeier
,
T.
Mayadas
,
U.
von Andrian
,
D.
Wagner
,
T.
Stossel
, and
J.
Hartwig
,
Cell
112
,
87
(
2003
).
8.
S. W.
Schneider
,
S.
Nuschele
,
A.
Wixforth
,
C.
Gorzelanny
,
A.
Alexander-Katz
,
R. R.
Netz
, and
M. F.
Schneider
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
7899
(
2007
).
9.
A.
Alexander-Katz
,
M. F.
Schneider
,
S. W.
Schneider
,
A.
Wixforth
, and
R. R.
Netz
,
Phys. Rev. Lett.
97
,
138101
(
2006
).
10.
N.
Lion
,
T. C.
Rohner
,
L.
Dayon
,
I. L.
Arnaud
,
E.
Damoc
,
N.
Youhnovski
,
W.
Zhi-Yong
,
C.
Roussel
,
J.
Josserand
,
H.
Jensen
,
J. S.
Rossier
,
M.
Przybylski
, and
H. H.
Girault
,
Electrophoresis
24
,
3533
(
2003
).
11.
E. M.
Purcell
,
Am. J. Phys.
45
,
3
(
1977
).
12.
A.
van den Berg
,
Lab-on-Chips for Cellomics, Micro and Nanotechnologies for Life Science
(
Springer
,
New York
,
2005
).
13.
A.
Wixforth
,
C.
Strobl
,
C.
Gauer
,
A.
Toegl
,
J.
Scriba
, and
Z.
Guttenberg
,
Anal. Bioanal. Chem.
379
,
982
(
2004
).
14.
Z.
Guttenberg
,
H.
Muller
,
H.
Habermuller
,
A.
Geisbauer
,
J.
Pipper
,
J.
Felbel
,
M.
Kielpinski
,
J.
Scriba
, and
A.
Wixforth
,
Lab Chip
5
,
308
(
2005
).
15.
Z.
Guttenberg
,
A.
Rathgeber
,
S.
Keller
,
J. O.
Radler
,
A.
Wixforth
,
M.
Kostur
,
M.
Schindler
, and
P.
Talkner
,
Phys. Rev. E
70
,
056311
(
2004
).
16.
K.
Sritharan
,
C. J.
Strobl
,
M. F.
Schneider
,
A.
Wixforth
, and
Z.
Guttenberg
,
Appl. Phys. Lett.
88
,
054102
(
2006
).
17.
W.
Nyborg
,
Acoustic Streaming
(
Academic
,
New York
,
1965
).
18.
M. F.
Schneider
,
Z.
Guttenberg
,
S. W.
Schneider
,
K.
Sritharan
,
V. M.
Myles
,
U.
Pamukci
, and
A.
Wixforth
,
ChemPhysChem
9
,
641
(
2008
).
19.
A.
Wixforth
,
J. Assoc. Lab. Autom.
11
,
399
(
2006
).
20.
L. Y.
Yeo
and
J. R.
Friend
,
Biomicrofluidics
3
,
012002
(
2009
).
21.
P.
Brunet
,
M.
Baudoin
,
O.
Bou Matar
, and
F.
Zoueshtiagh
,
Droplets Displacement and Oscillations Induced by Ultrasonic Surface Acoustic Waves: A Quantitative Study
, 3 November
2009
.
22.
S.
Girardo
,
M.
Cecchini
,
F.
Beltram
,
R.
Cingolani
, and
D.
Pisignano
,
Lab Chip
8
,
1557
(
2008
).
23.
M.
Cecchini
,
S.
Girardo
,
D.
Pisignano
,
R.
Cingolani
, and
F.
Beltram
,
Appl. Phys. Lett.
92
,
104103
(
2008
).
24.
T.
Krüger
,
M. A.
Fallah
,
F.
Varnik
,
M. F.
Schneider
,
D.
Raabe
, and
A.
Wixforth
, “
Inertia effects and stress accumulation in a constricted duct: A combined experimental and lattice Boltzmann study
,”
2010
(submitted).
25.
D.
Haydock
and
J.
Yeomans
,
J. Phys. A
36
,
5683
(
2003
).
26.
D.
Haydock
and
J.
Yeomans
,
J. Phys. A
34
,
5201
(
2001
).
27.
Y. H.
Qian
,
D.
D’Humières
, and
P.
Lallemand
,
Europhys. Lett.
17
,
479
(
1992
).
28.
S.
Succi
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
(
Oxford University Press
,
New York
,
2001
).
29.
A. J. C.
Ladd
and
R.
Verberg
,
J. Stat. Phys.
104
,
1191
(
2001
).
30.
B.
Dünweg
and
A. J. C.
Ladd
,
Lattice Boltzmann Simulations of Soft Matter Systems
,
Advanced Computer Simulation Approaches for Soft Matter Sciences III, Advances in Polymer Science
Vol.
221
(
Springer
,
New York
,
2009
), p.
89
.
31.
M.
Krafczyk
,
M.
Cerrolaza
,
M.
Schulz
, and
E.
Rank
,
J. Biomech.
31
,
453
(
1998
).
32.
A. M.
Artoli
,
A. G.
Hoekstra
, and
P. M. A.
Sloot
,
J. Biomech.
39
,
873
(
2006
).
33.
D.
Leitner
,
S.
Wassertheurer
,
M.
Hessinger
, and
A.
Holzinger
,
Elektrotechnik und Informationstechnik
123
,
152
(
2006
).
34.
D.
Wang
and
J.
Bernsdorf
,
Computers and Mathematics with Applications
Vol. 58
, pp.
1024
1029
,
2009
.
35.
PARAVIEW, June
2009
, http://www.paraview.org/.
36.
A.
Barg
,
R.
Ossig
,
T.
Goerge
,
M. F.
Schneider
,
H.
Schillers
,
H.
Oberleithner
, and
S. W.
Schneider
, “
Soluble plasma-derived von Willebrand factor assembles to a hemostatically active filamentous network
,”
Thromb. Haemostasis
97
,
514
(
2007
).
37.
T.
Goerge
,
F.
Kleineruschkamp
,
A.
Barg
,
E. M.
Schnaeker
,
V.
Huck
,
M. F.
Schneider
,
M.
Steinhoff
, and
S. W.
Schneider
,
Thromb. Haemostasis
98
,
283
(
2007
).
38.
D. G.
Menter
,
L.
Fitzgerald
,
J. T.
Patton
,
L. V.
McIntire
, and
G. L.
Nicolson
,
Immunol. Cell Biol.
73
,
575
(
1995
).
39.
J.
Pilch
,
R.
Habermann
, and
B.
Felding-Habermann
,
J. Biol. Chem.
277
,
21930
(
2002
).
40.
T.
Goerge
,
A.
Barg
,
E. -M.
Schnaeker
,
B.
Poppelmann
,
V.
Shpacovitch
,
A.
Rattenholl
,
C.
Maaser
,
T. A.
Luger
,
M.
Steinhoff
, and
S. W.
Schneider
,
Cancer Res.
66
,
7766
(
2006
).
You do not currently have access to this content.