The effect of an electrical double layer (EDL) on microchannel flow has been studied widely, and a constant bulk electric conductivity is often used in calculations of flow rate or pressure drop. In our experimental study of pressure-driven micropipette flows, the pipette diameter is on the same order of magnitude as the Debye length. The overlapping EDL resulted in a much higher electric conductivity, lower streaming potential, and lower electroviscous effect. To elucidate the effect of overlapping EDL, this paper developed a simple model for water flow without salts or dissolved gases (such as CO2) inside a two-dimensional microchannel. The governing equations for the flow, the Poisson, and Nernst equations for the electric potential and ion concentrations and the charge continuity equation were solved. The effects of overlapping EDL on the electric conductivity, velocity distribution, and overall pressure drop in the microchannel were quantified. The results showed that the average electric conductivity of electrolyte inside the channel increased significantly as the EDL overlaps. With the modified mean electric conductivity, the pressure drop for the pressure-driven flow was smaller than that without the influence of the EDL on conductivity. The results of this study provide a physical explanation for the observed decrease in electroviscous effect for microchannels when the EDL layers from opposing walls overlap.

1.
R. J.
Hunter
,
Zeta Potential in Colloid Science: Principles and Applications
(
Academic
,
New York
,
1981
).
2.
P. C.
Hiemenz
and
R.
Rajagopalan
,
Principles of Colloid and Surface Chemistry
, 3rd ed. (
Dekker
,
New York
,
1997
).
3.
R. J.
Yang
,
L. M.
Fu
, and
C. C.
Hwang
,
J. Colloid Interface Sci.
244
,
173
(
2001
).
4.
G. E.
Karniadakis
and
A.
Beskok
,
Micro Flows Fundamentals and Simulation
(
Springer-Verlag
,
New York
,
2002
).
5.
F.
Tian
and
D. Y.
Kwok
,
Langmuir
21
,
2192
(
2005
).
6.
W. R.
Bowen
and
F.
Jenner
,
J. Colloid Interface Sci.
173
,
388
(
1995
).
7.
W.
Qu
and
D.
Li
,
J. Colloid Interface Sci.
224
,
397
(
2000
).
9.
M. -S.
Chun
and
H. W.
Kwak
,
Korea-Aust. Rheol. J.
15
,
83
(
2003
).
10.
D.
Burgreen
and
F. R.
Nakache
,
J. Phys. Chem.
68
,
1084
(
1964
).
11.
C. L.
Rice
and
R.
Whitehead
,
J. Phys. Chem.
69
,
4017
(
1965
).
12.
S.
Levine
,
J. R.
Marriott
,
G.
Neale
, and
N.
Epstein
,
J. Colloid Interface Sci.
52
,
136
(
1975
).
13.
J. M.
MacInnes
,
Chem. Eng. Sci.
57
,
4539
(
2002
).
14.
J.
Yang
,
J. H.
Masliyah
, and
D. Y.
Kwok
,
Langmuir
20
,
3863
(
2004
).
15.
F.
Lu
,
J.
Yang
, and
D. Y.
Kwok
,
J. Phys. Chem. B
108
,
14970
(
2004
).
16.
M. R.
Davidson
and
D. J. E.
Harvie
,
Chem. Eng. Sci.
62
,
4229
(
2007
).
17.
R. P.
Bharti
,
D. J. E.
Harvie
, and
M. R.
Davidson
,
Chem. Eng. Sci.
63
,
3593
(
2008
).
18.
C. L.
Ren
and
D.
Li
,
Anal. Chim. Acta
531
,
15
(
2005
).
19.
T. W.
Healy
and
L. R.
White
,
Adv. Colloid Interface Sci.
9
,
303
(
1978
).
20.
R. J.
Hunter
,
Foundations of Colloid Science
, 2nd ed. (
Oxford University Press
,
New York
,
2001
).
21.
F.
Andrietti
,
A.
Peres
, and
R.
Pezzotta
,
Biophys. J.
16
,
1121
(
1976
).
22.
W. K.
Chandler
,
A. L.
Hodgkin
, and
H.
Meves
,
J. Physiol. (London)
180
,
821
(
1965
).
23.
M. -S.
Chun
,
T. S.
Lee
, and
N. W.
Choi
,
J. Micromech. Mecroeng.
15
,
710
(
2005
).
24.
M. -S.
Chun
,
S. -Y.
Lee
, and
S. -M.
Yang
,
J. Colloid Interface Sci.
266
,
120
(
2003
).
25.
L.
Ren
,
D.
Li
, and
W.
Qu
,
J. Colloid Interface Sci.
233
,
12
(
2001
).
26.
C.
Werner
,
H.
Korber
,
R.
Zimmermann
,
S.
Dukhin
, and
H. -J.
Jacobasch
,
J. Colloid Interface Sci.
208
,
329
(
1998
).
You do not currently have access to this content.