Efficient mixing is difficult to achieve in miniaturized devices due to the nature of low Reynolds number flow. Mixing can be intentionally induced, however, if conducting or nonconducting obstacles are embedded within the microchannel. In the case of conducting obstacles, vortices can be generated in the vicinity of the obstacle due to induced charge electro-osmosis (ICEO) which enhances mixing of different streams: the obstacle shape affects the induced zeta potential on the conducting surface, which in turn influences the flow profile near the obstacle. This study deals with optimization of the geometric shape of a conducting obstacle for the purpose of micromixing. The obstacle boundary is parametrically represented by nonuniform rational B-spline curves. The optimal obstacle shape, which maximizes the mixing for given operating conditions, is found using genetic algorithms. Various case studies at different operating conditions demonstrated that the near right triangle shape provides optimal mixing in the ICEO flow dominant regime, whereas rectangular shape is the optimal shape in diffusion dominant regime. The tradeoff between mixing and transport is examined for symmetric and nonsymmetric obstacle shapes.

1.
G. M.
Whitesides
,
Nature (London)
442
,
368
(
2006
).
2.
H. C.
Chang
,
Can. J. Chem. Eng.
84
,
146
(
2006
).
3.
P. S.
Dittrich
and
A.
Manz
,
Nat. Rev. Drug Discovery
5
,
210
(
2006
).
4.
A.
Manz
and
J. C. T.
Eijkel
,
Pure Appl. Chem.
73
,
1555
(
2001
).
5.
H. A.
Stone
and
S.
Kim
,
AIChE J.
47
,
1250
(
2001
).
6.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
7.
T. M.
Squires
and
S. R.
Quake
,
Rev. Mod. Phys.
77
,
977
(
2005
).
8.
R. J.
Hunter
,
Zeta Potential in Colloid Science: Principals and Applications
(
Academic
,
New York
,
1981
).
9.
T. M.
Squires
and
M. Z.
Bazant
,
J. Fluid Mech.
509
,
217
(
2004
).
10.
N. T.
Nguyen
and
Z. G.
Wu
,
J. Micromech. Microeng.
15
,
R1
(
2005
).
11.
C. C.
Chang
and
R. J.
Yang
,
Microfluid. Nanofluid.
3
,
501
(
2007
).
12.
J. T.
Coleman
and
D.
Sinton
,
Microfluid. Nanofluid.
1
,
319
(
2005
).
13.
E.
Biddiss
,
D.
Erickson
, and
D. Q.
Li
,
Anal. Chem.
76
,
3208
(
2004
).
14.
A. D.
Stroock
,
S. K.
Dertinger
,
G. M.
Whitesides
, and
A.
Ajdari
,
Anal. Chem.
74
,
5306
(
2002
).
15.
M. H.
Oddy
,
J. G.
Santiago
, and
J. C.
Mikkelsen
,
Anal. Chem.
73
,
5822
(
2001
).
16.
C. K.
Chen
and
C. C.
Cho
,
J. Colloid Interface Sci.
312
,
470
(
2007
).
17.
Z. M.
Wu
and
D. Q.
Li
,
Microfluid. Nanofluid.
5
,
65
(
2008
).
18.
Z. M.
Wu
and
D. Q.
Li
,
Electrochim. Acta
53
,
5827
(
2008
).
19.
M.
Jain
,
A.
Yeung
, and
K.
Nandakumar
,
J. Microelectromech. Syst.
18
,
376
(
2009
).
20.
N. I.
Gamayunov
,
V. A.
Murtsovkin
, and
A. S.
Dukhin
,
Colloid J. USSR
48
,
197
(
1986
).
21.
V. A.
Murtsovkin
,
Colloid J.
58
,
341
(
1996
).
22.
A.
Gonzalez
,
A.
Ramos
,
N. G.
Green
,
A.
Castellanos
, and
H.
Morgan
,
Phys. Rev. E
61
,
4019
(
2000
).
23.
M. Z.
Bazant
and
T. M.
Squires
,
Phys. Rev. Lett.
92
,
066101
(
2004
).
24.
J. A.
Levitan
,
S.
Devasenathipathy
,
V.
Studer
,
Y. X.
Ben
,
T.
Thorsen
,
T. M.
Squires
, and
M. Z.
Bazant
,
Colloids Surf., A
267
,
122
(
2005
).
25.
T. M.
Squires
and
M. Z.
Bazant
,
J. Fluid Mech.
560
,
65
(
2006
).
26.
H.
Zhao
and
H. H.
Bau
,
Langmuir
23
,
4053
(
2007
).
27.
L.
Piegl
and
W.
Tiller
,
The NURBS Book
(
Springer-Verlag
,
New York
,
1997
).
28.
F. Z.
Tian
,
B. M.
Li
, and
D. Y.
Kwok
,
Langmuir
21
,
1126
(
2005
).
You do not currently have access to this content.