This paper proposes a simple scenario to describe the coalescence of sessile droplets. This scenario predicts a power-law growth of the bridge between the droplets. The exponent of this power law depends on the driving mechanism for the spreading of each droplet. To validate this simple idea, the coalescence is simulated numerically and a basic experiment is performed. The fluid dynamics problem is formulated in the lubrication approximation framework and the governing equations are solved in the commercial finite element software COMSOL. Although a direct comparison of the numerical results with experiment is difficult because of the sensitivity of the coalescence to the initial and operating conditions, the key features of the event are qualitatively captured by the simulation and the characteristic time scale of the dynamics recovered. The experiment consists of inducing coalescence by pumping a droplet through a substrate which grows and ultimately coalesces with another droplet resting on the substrate. The coalescence was recorded using high-speed imaging and also confirmed the power-law growth of the neck.

1.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
2.
J.
Atencia
and
D. J.
Beebe
,
Nature (London)
437
,
648
(
2005
).
3.
W. D.
Ristenpart
,
P. M.
McCalla
,
R. V.
Roy
, and
H. A.
Stone
,
Phys. Rev. Lett.
97
,
064501
(
2006
).
4.
L. Y.
Yeo
,
R. V.
Craster
, and
O. K.
Matar
,
J. Colloid Interface Sci.
306
,
368
(
2007
).
5.
M.
Muselli
and
D.
Beysens
,
Science & Vie
1091
,
90
(
2008
).
6.
C.
Andrieu
,
D. A.
Beysens
,
V. S.
Nikolayev
, and
Y.
Pomeau
,
J. Fluid Mech.
453
,
453
(
2002
).
7.
R.
Narhe
,
D.
Beysens
, and
V. S.
Nikolayev
,
Langmuir
20
,
1213
(
2004
).
8.
R.
Narhe
,
D.
Beysens
, and
V. S.
Nikolayev
,
Int. J. Thermophys.
26
,
1743
(
2005
).
9.
N.
Kapur
and
P. H.
Gaskell
,
Phys. Rev. E
75
,
056315
(
2007
).
10.
R. D.
Narhe
,
D. A.
Beysens
, and
Y.
Pomeau
,
EPL
81
,
46002
(
2008
).
11.
J. A.
Diez
and
L.
Kondic
,
J. Comput. Phys.
183
,
274
(
2002
).
12.
A.
Menchaca-Rocha
,
A.
Martínez-Dávalos
,
R.
Núñez
,
S.
Popinet
, and
S.
Zaleski
,
Phys. Rev. E
63
,
046309
(
2001
).
13.
14.
L. W.
Schwartz
and
R. R.
Eley
,
J. Colloid Interface Sci.
202
,
173
(
1998
).
15.
J.
Diez
,
L.
Kondic
, and
A. L.
Bertozzi
,
Phys. Rev. E
63
,
011208
(
2000
).
16.
P. H.
Gaskell
,
P. K.
Jimack
,
M.
Sellier
, and
H. M.
Thompson
,
Int. J. Numer. Methods Fluids
45
,
1161
(
2004
).
17.
M.
Sellier
,
Y. -C.
Lee
,
H. M.
Thompson
, and
P. H.
Gaskell
,
Comput. Fluids
38
,
171
(
2009
).
18.
M.
Sellier
and
S.
Panda
,
Int. J. Numer. Methods Fluids
(unpublished); (http://www3.interscience.wiley.com/journal/108061200/issue).
19.
R.
Ferreira
and
F.
Bernis
,
Eur. J. Appl. Math.
8
,
507
(
1997
).
20.
T. J.
Collins
,
BioTechniques
43
,
S25
(
2007
).
21.
J.
Lopez
,
C. A.
Miller
, and
E.
Ruckenstein
,
J. Colloid Interface Sci.
56
,
460
(
1976
).
22.
H. E.
Huppert
,
J. Fluid Mech.
121
,
43
(
1982
).
23.
R.
Chebbi
,
J. Colloid Interface Sci.
300
,
688
(
2006
).
You do not currently have access to this content.