Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

1.
D.
Mattia
and
Y.
Gogotsi
,
Microfluid. Nanofluid.
5
,
289
(
2008
).
2.
A.
Noy
,
H. G.
Park
,
F.
Fornasiero
,
J. K.
Holt
,
C. P.
Grigoropoulos
, and
O.
Bakajin
,
Nanotoday
2
,
22
(
2007
).
3.
M.
Whitby
and
N.
Quirke
,
Nat. Nanotechnol.
2
,
87
(
2007
).
4.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature (London)
414
,
188
(
2001
).
5.
Y. C.
Liu
and
Q.
Wang
,
Phys. Rev. B
72
,
085420
(
2005
).
6.
D. J.
Mann
and
M. D.
Halls
,
Phys. Rev. Lett.
90
,
195503
(
2003
).
7.
P.
Král
and
M.
Shapiro
,
Phys. Rev. Lett.
86
,
131
(
2001
).
8.
S.
Ghosh
,
A. K.
Sood
, and
N.
Kumar
,
Science
299
,
1042
(
2003
).
9.
S.
Ghosh
,
A. K.
Sood
,
S.
Ramaswamy
, and
N.
Kumar
,
Phys. Rev. B
70
,
205423
(
2004
).
10.
Y. C.
Zhao
,
L.
Song
,
K.
Deng
,
Z.
Liu
,
Z. X.
Zhang
,
Y. L.
Yang
,
C.
Wang
,
H. F.
Yang
,
A. Z.
Jin
,
Q.
Luo
,
C. Z.
Gu
,
S. S.
Xie
, and
L. F.
Sun
,
Adv. Mater. (Weinheim, Ger.)
20
,
1772
(
2008
).
11.
Q. Z.
Yuan
and
Y. P.
Zhao
,
J. Am. Chem. Soc.
131
,
6374
6376
(
2009
).
12.
X.
Blase
,
A.
Rubio
,
S. G.
Louie
, and
M. L.
Cohen
,
Europhys. Lett.
28
,
335
(
1994
).
13.
Y.
Chen
,
J.
Zou
,
S. J.
Campbell
, and
G.
Le Caer
,
Appl. Phys. Lett.
84
,
2430
(
2004
).
14.
C. Y.
Won
and
N. R.
Aluru
,
J. Am. Chem. Soc.
129
,
2748
(
2007
).
15.
C. Y.
Won
and
N. R.
Aluru
,
J. Phys. Chem. C
112
,
1812
(
2008
).
16.
H.
Sun
,
J. Phys. Chem. B
102
,
7338
(
1998
).
17.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
18.
M.
Majumder
,
N.
Chopra
,
R.
Andrews
, and
B. J.
Hinds
,
Nature (London)
438
,
44
(
2005
).
19.
A.
Kalra
,
S.
Garde
, and
G.
Hummer
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
10175
(
2003
).
20.
F. Q.
Zhu
,
E.
Tajkhorshid
, and
K.
Schulten
,
Biophys. J.
83
,
154
(
2002
).
21.
R. Z.
Wan
,
J. Y.
Li
,
H. J.
Lu
, and
H. P.
Fang
,
J. Am. Chem. Soc.
127
,
7166
(
2005
).
22.
J. Y.
Li
,
X. J.
Gong
,
H. J.
Lu
,
D.
Li
,
H. P.
Fang
, and
R. H.
Zhou
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
3687
(
2007
).
23.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Hilger
,
London
,
1989
).
24.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
25.
M. J.
Frisch
,
G. W.
Trudes
,
H. B.
Schlegel
 et al, GAUSSIAN03, Revision D.01, Gaussian, Inc., Wallingford, CT,
2004
.
26.
R. J.
Mashl
,
S.
Joseph
,
N. R.
Aluru
, and
E.
Jakobsson
,
Nano Lett.
3
,
589
(
2003
).
27.
C. Y.
Won
,
S.
Joseph
, and
N. R.
Aluru
,
J. Chem. Phys.
125
,
114701
(
2006
).
28.
A.
Waghe
,
J. C.
Rasaiah
, and
G.
Hummer
,
J. Chem. Phys.
117
,
10789
(
2002
).
You do not currently have access to this content.