This paper investigates the phenomenon of Faradaic charging in ac electrokinetics. Faradaic reactions were suggested as a key effect responsible for the reversal of pumping direction in ac micropumps. However, this hypothesis has yet to be proven convincingly and directly. Here we present an ion detection strategy to determine the production of ions through Faradaic hydrolytic reactions originating from direct application of voltage to electrolytic solutions during ac electrokinetics. Experiments were performed with symmetrical planar electrodes aligned along a microfluidic channel. Fluorescein, a pH-dependent dye, was employed as the pH indicator for the detection of ion production. Images were captured for analysis at various voltage levels. From analyzing the fluorescence intensity and its distribution, it can be concluded that the production of ions from hydrolytic reactions takes place and increases with the ac voltage. The coefficient of deviation indicates a significant enhancement at ac voltage above 11Vpp. Lastly, we demonstrate a strategy using dc-biased ac electrokinetics to achieve controllability in direction and magnitude of the net fluid flow in pumping application.

1.
H.-C.
Chang
,
Can. J. Chem. Eng.
84
,
146
(
2006
).
2.
H. -C.
Chang
and
G.
Yossifon
,
Biomicrofluidics
3
,
012001
(
2009
).
3.
J.
Wu
,
Y.
Ben
, and
H. -C.
Chang
,
Microfluid. Nanofluid.
1
,
161
(
2005
).
4.
J. -R.
Du
,
Y. -J.
Juang
,
J. -T.
Wu
, and
H. -H.
Wei
,
Biomicrofluidics
2
,
044103
(
2008
).
5.
N.
Lewpiriyawong
,
C.
Yang
, and
Y. C.
Lam
,
Biomicrofluidics
2
,
034105
(
2008
).
6.
C. H.
Kua
,
Y. C.
Lam
,
I.
Rodríguez
,
C.
Yang
, and
K.
Youcef-Toumi
,
Anal. Chem.
79
,
6975
(
2007
).
7.
A. B. D.
Brown
,
C. G.
Smith
, and
A. R.
Rennie
,
Phys. Rev. E
63
,
016305
(
2000
).
8.
M.
Mpholo
,
C. G.
Smith
, and
A. B. D.
Brown
,
Sens. Actuators B
92
,
262
(
2003
).
9.
S.
Debesset
,
C. J.
Hayden
,
C.
Dalton
,
J. C. T.
Eijkel
, and
A.
Manz
,
Lab Chip
4
,
396
(
2004
).
10.
J.
Wu
,
J. Appl. Phys.
103
,
024907
(
2008
).
11.
D.
Lastochkin
,
R.
Zhou
,
P.
Wang
,
Y.
Ben
, and
H. -C.
Chang
,
J. Appl. Phys.
96
,
1730
(
2004
).
12.
V.
Studer
,
A.
Pepin
,
Y.
Chen
, and
A.
Ajdari
,
Analyst (Lond.)
129
,
944
(
2004
).
13.
A.
Ramos
,
H.
Morgan
,
N. G.
Green
,
A.
Gonalez
, and
A.
Castellanos
,
J. Appl. Phys.
97
,
084906
(
2005
).
14.
J. P.
Urbanski
,
T.
Thorsen
,
J. A.
Levitan
, and
M. Z.
Bazant
,
Appl. Phys. Lett.
89
,
143508
(
2006
).
15.
P.
Garcia-Sanchez
,
A.
Ramos
,
N. G.
Green
, and
H.
Morgan
,
Langmuir
24
,
9361
(
2008
).
16.
K.
Yang
and
J.
Wu
,
Biomicrofluidics
2
,
024101
(
2008
).
17.
N.
Sasaki
,
T.
Kitamori
, and
H. B.
Kim
,
Lab Chip
6
,
550
(
2006
).
18.
W. Y.
Ng
,
S.
Goh
,
Y. C.
Lam
,
C.
Yang
, and
I.
Rodríguez
,
Lab Chip
9
,
802
(
2009
).
19.
W. Y.
Ng
,
Y. C.
Lam
, and
I.
Rodríguez
,
Proceedings of the Conference on Advances in Microfluidics and Nanofluidics
, Hong Kong,
2009
(unpublished), Paper No. E7-1.
20.
A.
Ramos
,
H.
Morgan
,
N. G.
Green
, and
A.
Castellanos
,
J. Phys. D
31
,
2338
(
1998
).
21.
22.
L. H.
Olesen
,
H.
Bruus
, and
A.
Ajdari
,
Phys. Rev. E
73
,
056313
(
2006
).
23.
A.
Ramos
,
A.
Gonalez
,
P.
Garcia-Sanchez
, and
A.
Castellanos
,
J. Colloid Interface Sci.
309
,
323
(
2007
).
24.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 88th ed. (
CRC
,
Boca Raton
/
Taylor & Francis
,
New York
,
2008
), pp.
8
18
.
25.
S.
Fiedler
,
R.
Hagedom
,
T.
Schnelle
,
E.
Richter
,
B.
Wagner
, and
G.
Fuhr
,
Anal. Chem.
67
,
820
(
1995
).
26.
J. C.
McDonald
and
G. M.
Whitesides
,
Acc. Chem. Res.
35
,
491
(
2002
).
27.
M.
Trau
,
D. A.
Saville
, and
I. A.
Aksay
,
Langmuir
13
,
6375
(
1997
).
28.
R. G. H.
Lammertink
,
S.
Schlautmann
,
G. A. J.
Besselink
, and
R. B. M.
Schasfoort
,
Anal. Chem.
76
,
3018
(
2004
).
You do not currently have access to this content.