Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then decelerated in the diverging region, with the maximum translational velocity at the throat. For particles with diameters close to the width of the channel throat, the usual acceleration process is divided into three stages: Acceleration, deceleration, and reacceleration instead of a monotonic acceleration. Moreover, the maximum translational velocity occurs at the end of the first acceleration stage rather than at the throat. Along the centerline of the microchannel, particles do not rotate, and the closer a particle is located near the channel wall, the higher is its rotational velocity. Analysis of the transport of two particles demonstrates the feasibility of using a converging-diverging microchannel for passive (biological and synthetic) particle separation and ordering.

1.
T. M.
Squires
and
S. R.
Quake
,
Rev. Mod. Phys.
77
,
977
(
2005
).
2.
P. S.
Dittrich
and
A.
Manz
,
Nat. Rev. Drug Discovery
5
,
210
(
2006
).
3.
D. B.
Weibel
and
G. M.
Whitesides
,
Curr. Opin. Chem. Biol.
10
,
584
(
2006
).
4.
F. A.
Gomez
,
Biological Applications of Microfluidics
(
Wiley Interscience
,
New Jersey
,
2008
).
5.
R.
Johann
and
P.
Renaud
,
Electrophoresis
25
,
3720
(
2004
).
6.
Z.
Palkova
,
L.
Vachova
,
M.
Valer
, and
T.
Preckel
,
Cytometry, Part A
59A
,
246
(
2004
).
7.
D.
Stein
,
F. H. J.
van der Heyden
,
W. J. A.
Koopmans
, and
C.
Dekker
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
15853
(
2006
).
8.
J. W.
Munyan
,
H. V.
Fuentes
,
M.
Draper
,
R. T.
Kelly
, and
A. T.
Woolley
,
Lab Chip
3
,
217
(
2003
).
9.
J. W.
Kan
,
Z. G.
Yang
,
T. J.
Peng
,
G. M.
Cheng
, and
B.
Wu
,
Sens. Actuator, A
121
,
156
(
2005
).
10.
J.
Happel
and
B. J.
Byrne
,
J. Ind. Eng. Chem. (Seoul, Repub. Korea)
46
,
1181
(
1954
).
11.
W. L.
Haberman
,
R. M.
Sayre
, and
W.
David
, Taylor Basin Report No. 1143,
1958
.
12.
R. G.
Cox
and
S. G.
Mason
,
Annu. Rev. Fluid Mech.
3
,
291
(
1971
).
13.
P. M.
Bungay
and
H.
Brenner
,
Int. J. Multiphase Flow
1
,
25
(
1973
).
14.
M.
Iwaoka
and
T.
Ishii
,
J. Chem. Eng. Jpn.
12
,
239
(
1979
).
15.
N.
Al Quddus
,
W. A.
Moussa
, and
S.
Bhattacharjee
,
J. Colloid Interface Sci.
317
,
620
(
2008
).
16.
M. E.
Staben
and
R. H.
Davis
,
Int. J. Multiphase Flow
31
,
529
(
2005
).
17.
M. E.
Staben
,
A. Z.
Zinchenko
, and
R. H.
Davis
,
J. Fluid Mech.
553
,
187
(
2006
).
18.
M. L.
Plenert
and
J. B.
Shear
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
3853
(
2003
).
19.
X. C.
Xuan
,
B.
Xu
, and
D. Q.
Li
,
Anal. Chem.
77
,
4323
(
2005
).
20.
S. Z.
Qian
,
A. H.
Wang
, and
J. K.
Afonien
,
J. Colloid Interface Sci.
303
,
579
(
2006
).
21.
Y. J.
Kang
,
D. Q.
Li
,
S. A.
Kalams
, and
J. E.
Eid
,
Biomed. Microdevices
10
,
243
(
2008
).
22.
G. L.
Lettieri
,
A.
Dodge
,
G.
Boer
,
N. F.
de Rooij
, and
E.
Verpoorte
,
Lab Chip
3
,
34
(
2003
).
23.
X. C.
Xuan
and
D. Q.
Li
,
J. Micromech. Microeng.
16
,
62
(
2006
).
24.
J. W.
Larson
,
G. R.
Yantz
,
Q.
Zhong
,
R.
Charnas
,
C. M.
D’Antoni
,
M. V.
Gallo
,
K. A.
Gillis
,
L. A.
Neely
,
K. M.
Phillips
,
G. G.
Wong
,
S. R.
Gullans
, and
R.
Gilmanshin
,
Lab Chip
6
,
1187
(
2006
).
25.
S. S.
Hsieh
and
J. H.
Liou
,
Biotechnol. Appl. Biochem.
52
,
29
(
2009
).
26.
D. W.
Trahan
and
P. S.
Doyle
,
Biomicrofluidics
3
,
012803
(
2009
).
27.
H. H.
Hu
,
D. D.
Joseph
, and
M. J.
Crochet
,
Theor. Comput. Fluid Dyn.
3
,
285
(
1992
).
28.
H. H.
Hu
,
N. A.
Patankar
, and
M. Y.
Zhu
,
J. Comput. Phys.
169
,
427
(
2001
).
29.
C. Z.
Ye
,
D.
Sinton
,
D.
Erickson
, and
D. Q.
Li
,
Langmuir
18
,
9095
(
2002
).
30.
C. Z.
Ye
and
D. Q.
Li
,
Microfluid. Nanofluid.
1
,
52
(
2004
).
31.
C. Z.
Ye
and
D. Q.
Li
,
J. Colloid Interface Sci.
272
,
480
(
2004
).
32.
C. Z.
Ye
,
X. C.
Xuan
, and
D. Q.
Li
,
Microfluid. Nanofluid.
1
,
234
(
2005
).
33.
S. M.
Davison
and
K. V.
Sharp
,
Microfluid. Nanofluid.
4
,
409
(
2008
).
34.
S. M.
Davison
and
K. V.
Sharp
,
J. Colloid Interface Sci.
303
,
288
(
2006
).
35.
X. C.
Xuan
,
C. Z.
Ye
, and
D. Q.
Li
,
J. Colloid Interface Sci.
289
,
286
(
2005
).
36.
Y.
Ai
,
S. W.
Joo
,
Y.
Jiang
,
X. C.
Xuan
, and
S.
Qian
, “
Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: Effect of direct current- dielectric force
,”
Electrophoresis
(in press).
37.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18892
(
2007
).
38.
D.
Di Carlo
,
J. F.
Edd
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
,
Anal. Chem.
80
,
2204
(
2008
).
40.
S.
Choi
,
S.
Song
,
C.
Choi
, and
J. K.
Park
,
Lab Chip
7
,
1532
(
2007
).
41.
N.
Korin
,
A.
Bransky
, and
U.
Dinnar
,
J. Biomech.
40
,
2088
(
2007
).
42.
N.
Korin
,
A.
Bransky
,
N.
Lanir
,
Y.
Nemirovski
, and
U.
Dinnar
,
Biorheology
45
,
34
(
2008
).
You do not currently have access to this content.