In this paper, we demonstrate for the first time the technique to using microfluidics to fabricate tissue engineering scaffolds with uniform pore sizes. We investigate both the bubble generation of the microfluidic device and the application of foam as a tissue engineering scaffold. Our microfluidic device consists of two concentric tapered channels, which are made by micropipettes. Nitrogen gas and aqueous alginate solution with Pluronic® F127 surfactant are pumped through the inner and the outer channels, respectively. We observe rich dynamic patterns of bubbles encapsulated in the liquid droplets. The size of the bubble depends linearly on the gas pressure and inversely on the liquid flow rate. In addition, monodisperse bubbles self-assemble into crystalline structures. The liquid crystalline foams are further processed into open-cell solid foams. The novel foam gel was used as a scaffold to culture chondrocytes.

1.
A.
Abbott
,
Nature (London)
424
,
870
(
2003
).
2.
E.
Cukierman
,
R.
Pankov
,
D. R.
Stevens
, and
K. M.
Yamada
,
Science
294
,
1708
(
2001
).
3.
T.
Sun
,
S.
Jackson
,
J. W.
Haycock
, and
S.
MacNeil
,
J. Biotechnol.
122
,
372
(
2006
).
4.
Methods of Tissue Engineering
, edited by
A.
Atala
and
R. P.
Lanza
(
Academic
,
San Diego
,
2002
).
5.
S.
Zmora
,
R.
Glicklis
, and
S.
Cohen
,
Biomaterials
23
,
4087
(
2002
).
6.
J. H.
Aubert
and
R. L.
Clough
,
Polymer
26
,
2047
(
1985
).
7.
A. G.
Mikos
,
A. J.
Thorsen
,
L. A.
Czerwonka
,
Y.
Bao
,
R.
Langer
,
D. N.
Winslow
, and
J. P.
Vacanti
,
Polymer
35
,
1068
(
1994
).
8.
A. C.
Sullivan
and
S. N.
Jayasinghe
,
Biomicrofluidics
1
,
034103
(
2007
).
9.
W. J.
Li
,
C. T.
Laurencin
,
E. J.
Caterson
,
R. S.
Tuan
, and
F. K.
Ko
,
J. Biomed. Mater. Res.
60
,
613
(
2002
).
10.
H. J.
Chung
and
T. G.
Park
,
Adv. Drug Delivery Rev.
59
,
249
(
2007
).
11.
J. A.
Rowley
,
G.
Madlambayan
, and
D. J.
Mooney
,
Biomaterials
20
,
45
(
1999
).
12.
S. J.
Hollister
,
Nature Mater.
5
,
590
(
2006
).
13.
D.
Gallego
,
N.
Ferrell
,
Y.
Sun
, and
D. J.
Hansford
,
Mater. Sci. Eng., C
28
,
353
(
2008
).
14.
J. L.
Simon
,
S.
Michna
,
J. A.
Lewis
,
E. D.
Rekow
,
V. P.
Thompson
,
J. E.
Smay
,
A.
Yampolsky
,
J. R.
Parsons
, and
J. L.
Ricci
,
J. Biomed. Mater. Res. Part A
83A
,
747
(
2007
).
15.
M. S.
Hahn
,
J. S.
Miller
, and
J. L.
West
,
Adv. Mater. (Weinheim, Ger.)
18
,
2679
(
2006
).
16.
N. A.
Kotov
,
Y. F.
Liu
,
S. P.
Wang
,
C.
Cumming
,
M.
Eghtedari
,
G.
Vargas
,
M.
Motamedi
,
J.
Nichols
, and
J.
Cortiella
,
Langmuir
20
,
7887
(
2004
);
[PubMed]
Y. J.
Zhang
,
S. P.
Wang
,
M.
Eghtedari
,
M.
Motamedi
, and
N. A.
Kotov
,
Adv. Funct. Mater.
15
,
725
(
2005
).
17.
M.
Vignes-Adler
and
D.
Weaire
,
Curr. Opin. Colloid Interface Sci.
13
,
141
(
2008
).
18.
P.
Garstecki
,
M. J.
Fuerstman
, and
G. M.
Whitesides
,
Phys. Rev. Lett.
94
,
234502
(
2005
).
19.
E.
Lorenceau
,
Y. Y. C.
Sang
,
R.
Hohler
, and
S.
Cohen-Addad
,
Phys. Fluids
18
,
097103
(
2006
).
20.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
,
Lab Chip
6
,
437
(
2006
).
21.
G. F.
Christopher
and
S. L.
Anna
,
J. Phys. D
40
,
R319
(
2007
).
22.
P.
Garstecki
and
G. M.
Whitesides
,
Phys. Rev. Lett.
97
,
024503
(
2006
).
23.
J. P.
Raven
and
P.
Marmottant
,
Phys. Rev. Lett.
97
,
154501
(
2006
).
24.
A. M.
Gañán-Calvo
,
Nat. Phys.
1
,
139
(
2005
).
25.
S.
Arumuganathar
,
N.
Suter
, and
S. N.
Jayasinghe
,
Adv. Mater. (Weinheim, Ger.)
20
,
4419
(
2008
).
26.
A. S.
Utada
,
E.
Lorenceau
,
D. R.
Link
,
P. D.
Kaplan
,
H. A.
Stone
, and
D. A.
Weitz
,
Science
308
,
537
(
2005
).
27.
S. F.
Khattak
,
S. R.
Bhatia
, and
S. C.
Roberts
,
Tissue Eng.
11
,
974
(
2005
).
28.
Biological Applications of Microfluidics
, edited by
F. A.
Gomez
(
Wiley
,
New York
,
2008
).
29.
C. H. J.
Schmitz
,
A. C.
Rowat
,
S.
Köster
, and
D. A.
Weitz
,
Lab Chip
9
,
44
(
2009
).
30.
M. Y.
He
,
J. S.
Edgar
,
G. D. M.
Jeffries
,
R. M.
Lorenz
,
J. P.
Shelby
, and
D. T.
Chiu
,
Anal. Chem.
77
,
1539
(
2005
).
You do not currently have access to this content.