Dielectrophoresis (DEP), the phenomenon of directed motion of electrically polarizable particles in a nonuniform electric field, is promising for applications in biochemical separation and filtration. For colloidal particles in suspension, the relaxation of the ionic species in the shear layer gives rise to a frequency-dependent, bidirectional DEP force in the radio frequency range. However, quantification methods of the DEP force on individual particles with the pico-Newton resolution required for the development of theories and design of device applications are lacking. We report the use of optical tweezers as a force sensor and a lock-in phase-sensitive technique for analysis of the particle motion in an amplitude modulated DEP force. The coherent detection and sensing scheme yielded not only unprecedented sensitivity for DEP force measurements, but also provided a selectivity that clearly distinguishes the pure DEP force from all the other forces in the system, including electrophoresis, electro-osmosis, heat-induced convection, and Brownian forces, all of which can hamper accurate measurements through other existing methods. Using optical tweezers-based force transducers already developed in our laboratory, we have results that quantify the frequency-dependent DEP force and the crossover frequency of individual particles with this new experimental method.

1.
H. A.
Pohl
,
J. Appl. Phys.
22
,
869
(
1951
).
2.
H. A.
Pohl
,
J. Appl. Phys.
29
,
1182
(
1958
).
3.
4.
H. D.
Ou-Yang
, in
Polymer-Colloid Interactions: From Fundamentals To Practice
, edited by
P.
Dubin
and
R.
Farinato
(
Wiley
,
New York
,
1999
) Chap. 15, pp.
385
405
.
5.
L. A.
Hough
and
H. D.
Ou-Yang
,
Phys. Rev. E
65
,
021906
(
2002
).
6.
L. A.
Hough
and
H. D.
Ou-Yang
,
Phys. Rev. E
73
,
031802
(
2006
).
7.
M. T.
Wei
,
A.
Zaorski
,
H. C.
Yalcin
,
J.
Wang
,
M.
Hallow
,
S. N.
Ghadiali
,
A.
Chiou
, and
H. D.
Ou-Yang
,
Opt. Express
16
,
8594
(
2008
).
8.
N. G.
Green
and
H.
Morgan
,
J. Phys. Chem. B
103
,
41
(
1999
).
9.
A. R.
Minerick
and
R.
Pethig
,
American Electrophoresis Society Newsletter
10
,
2
(
2005
).
10.
I. F.
Cheng
,
H. C.
Chang
,
D.
Hou
, and
H.-C.
Chang
,
Biomicrofluidics
1
,
021503
(
2007
).
11.
P. D.
Hoffman
,
P. S.
Sarangpapani
, and
Y.
Zhu
,
Langmuir
24
,
12164
(
2008
).
12.
P. D.
Hoffman
and
Y.
Zhu
,
Appl. Phys. Lett.
92
,
224103
(
2008
).
13.
J. E.
Gordon
,
Z.
Gagnon
, and
H. C.
Chang
,
Biomicrofluidics
1
,
044102
(
2007
).
14.
F. F.
Becker
,
X. -B.
Wang
,
Y.
Huang
,
R.
Pethig
,
J.
Vykoukal
, and
P. R. C.
Gascoyne
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
860
(
1995
).
15.
Z.
Gagnon
and
H. C.
Chang
,
Electrophoresis
26
,
3725
(
2005
).
16.
M. P.
Hughes
and
H.
Morgan
,
J. Phys. D: Appl. Phys.
31
,
2205
(
1998
).
17.
H.
Morgan
,
M. P.
Hughes
, and
N. G.
Green
,
Biophys. J.
77
,
516
(
1999
).
18.
M.
Washizu
,
S.
Suzuki
,
O.
Kurosawa
,
T.
Nishizaka
, and
T.
Shinohara
,
IEEE Trans. Ind. Appl.
30
,
835
(
1994
).
You do not currently have access to this content.