This paper reports the improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids. Since rectification in a diffuser/nozzle structure with Newtonian fluids is caused by inertial effects, micropumps based on this concept require a relatively high Reynolds numbers and high pumping frequencies. In applications with relatively low Reynolds numbers, anisotropic behavior can be achieved with viscoelastic effects. In our investigations, a solution of dilute polyethylene oxide was used as the viscoelastic fluid. A microfluidic device was fabricated in silicon using deep reactive ion etching. The microfluidic device consists of access ports for pressure measurement, and a series of ten diffuser/nozzle structures. Measurements were carried out for diffuser/nozzle structures with opening angles ranging from 15° to 60°. Flow visualization, pressure drop and diodicity of de-ionized water and the viscoelastic fluid were compared and discussed. The improvement of diodicity promises a simple pumping concept at low Reynolds numbers for lab-on-a-chip applications.

1.
N. T.
Nguyen
,
X. Y.
Huang
, and
T. K.
Chuan
ASME J. Fluids Eng.
124
,
384
(
2002
).
2.
D. J.
Laser
and
J. G. J.
Santiago
,
J. Micromech. Microeng.
14
,
R35
(
2004
).
3.
K. W.
Oh
and
C. H.
Ahn
,
J. Micromech. Microeng.
16
,
R13
(
2006
).
4.
N. T.
Nguyen
,
A. H.
Meng
,
J.
Black
, and
R. M.
White
,
Sens. Actuators, A
79
,
115
(
2000
).
5.
N. T.
Nguyen
and
R. M.
White
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1463
(
2000
).
6.
E.
Stemme
and
G.
Stemme
,
Sens. Actuators, A
39
,
159
(
1993
).
7.
T.
Gerlach
and
H.
Wurmus
,
Sens. Actuators, A
50
,
135
(
1995
).
8.
N. T.
Nguyen
and
X. Y.
Huang
,
Sens. Actuators, A
88
,
104
(
2001
).
9.
O. C.
Jeong
and
S. S.
Yang
,
Sens. Actuators, A
83
,
249
(
2000
).
10.
A.
Olsson
,
G.
Stemme
, and
E.
Stemme
,
Sens. Actuators, A
57
,
137
(
1996
).
11.
A.
Olsson
,
G.
Stemme
, and
E.
Stemme
,
Sens. Actuators, A
84
,
165
(
2000
).
12.
M.
Heschel
,
M.
Mullenborn
, and
S.
Bouwstra
,
J. Microelectromech. Syst.
6
,
41
(
1997
).
13.
F. K.
Forster
,
R. L.
Bardell
,
M. A.
Afromowitz
,
N. R.
Sharma
, and
A.
Blanchard
,
Proceedings of ASME Fluids Engineering Division, ASME International Mechanical Engineering Congress and Exposition, San Francisco
(
ASME
,
New York
,
1995
), Vol. 234, p. 39.
14.
T. Q.
Truong
and
N. T.
Nguyen
, in
Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, San Francisco
(
NIST
,
Cambridge, MA
,
2003
), Chap. 9, p. 178.
15.
C. L.
Sun
and
Z. H.
Yang
,
J. Microelectromech. Syst.
17
,
2031
(
2007
).
16.
A.
Groisman
,
M.
Enzelberger
, and
S.
Quake
,
Science
300
,
955
(
2003
).
17.
A.
Groisman
and
S.
Quake
,
Phys. Rev. Lett.
92
,
094501
(
2004
).
18.
L. E.
Rodd
,
T. P.
Scott
,
D. V.
Boger
,
J. J.
Cooper-White
, and
J. H.
McKinley
,
J. Non-Newtonian Fluid Mech.
129
,
1
(
2005
).
19.
H. Y.
Gan
,
Y. C.
Lam
,
N. T.
Nguyen
,
K. C.
Tam
, and
C.
Yang
,
Microfluidics and Nanofluidics
3
,
101
(
2006
).
20.
N. T.
Nguyen
,
Fundamentals and Applications of Microfluidics
, 2nd ed. (
Artech House
,
Boston
,
2006
).
You do not currently have access to this content.