Paper-based microfluidic devices are widely used in point-of-care diagnostics, yet the fundamental mechanisms governing analyte transport under partially saturated conditions remain insufficiently characterized. Here, we systematically investigate the concentration-dependent imbibition dynamics and particle trapping behavior of analyte/colloid-laden fluids in porous paper substrates. Using model food-dye colloids of varying particle sizes (∼0.3–4.5 μm) and concentrations (0.5–2 mg/ml), we quantify key saturation-dependent parameters and reveal their strong influence on wicking length and analyte retention. A semiempirical numerical model incorporating experimentally derived van Genuchten and Brooks–Corey parameters is developed to predict analyte flow under varying conditions. Our study demonstrates that particle size, concentration, and paper properties critically modulate transport behavior, with implications for reproducibility and sensitivity in lateral flow assays. Furthermore, through Damköhler number analysis, we propose practical design guidelines for optimal test line placement based on flow and reaction dynamics. This combined experimental and modeling framework offers new insights for the rational design and optimization of paper-based diagnostic platforms.

1.
S. A.
El-Safty
and
M. A.
Shenashen
, “
Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases
,”
Mater. Today Bio
5
,
100044
(
2020
).
2.
P. P.
Behera
,
S. K.
Mehta
,
R. K.
Arun
, and
P. K.
Mondal
, “
Solute imbibition in paper strip: Pore-scale insights into the concentration-dependent permeability
,”
Phys. Fluids
35
(
12
),
122007
(
2023
).
3.
P. P.
Behera
,
S. K.
Mehta
,
K.
Agarwal
,
S.
Bera
,
R. K.
Arun
, and
P. K.
Mondal
, “
Paper-based lateral flow assays: Prediction of methanol content in alcoholic beverages
,”
Phys. Fluids
36
(
12
),
123619
(
2024
).
4.
L.
Campo-Deaño
,
F. J.
Galindo-Rosales
,
F. T.
Pinho
,
M. A.
Alves
, and
M. S. N.
Oliveira
, “
Nanogel formation of polymer solutions flowing through porous media
,”
Soft Matter
8
(
24
),
6445
6453
(
2012
).
5.
H.
Li
and
T.
Zhang
, “
Imaging and characterizing fluid invasion in micro-3D printed porous devices with variable surface wettability
,”
Soft Matter
15
(
35
),
6978
6987
(
2019
).
6.
T.
Hulikal Chakrapani
,
H.
Bazyar
,
R. G. H.
Lammertink
,
S.
Luding
, and
W. K.
den Otter
, “
The permeability of pillar arrays in microfluidic devices: An application of Brinkman’s theory towards wall friction
,”
Soft Matter
19
(
3
),
436
450
(
2023
).
7.
S.
Verma
and
B. J.
Toley
, “
Saturation equation: An analytical expression for partial saturation during wicking flow in paper microfluidic channels
,”
Langmuir
40
(
22
),
11419
11427
(
2024
).
8.
E.
Noviana
,
T.
Ozer
,
C. S.
Carrell
,
J. S.
Link
,
C.
McMahon
,
I.
Jang
, and
C. S.
Henry
, “
Microfluidic paper-based analytical devices: From design to applications
,”
Chem. Rev.
121
(
19
),
11835
11885
(
2021
).
9.
J. P.
Smithers
,
J.
Sheu
,
B.
Richardson
, and
M. A.
Hayes
, “
Nanoridge filters: Fabrication strategies and performance optimization for nano-scale microfluidic particle filtration
,”
Biomicrofluidics
18
(
5
),
54102
(
2024
).
10.
S. K.
AlShmmari
,
R. S.
Fardous
,
Z.
Shinwari
,
D.
Cialla-May
,
J.
Popp
,
Q.
Ramadan
, and
M.
Zourob
, “
Hepatic spheroid-on-a-chip: Fabrication and characterization of a spheroid-based in vitro model of the human liver for drug screening applications
,”
Biomicrofluidics
18
(
3
),
34105
(
2024
).
11.
S. S.
Soman
,
S. A.
Samad
,
P.
Venugopalan
,
N.
Kumawat
, and
S.
Kumar
, “
Microfluidic paper analytic device (μPAD) technology for food safety applications
,”
Biomicrofluidics
18
(
3
),
31501
(
2024
).
12.
L.
Milić
,
N. S.
Zambry
,
F. B.
Ibrahim
,
B.
Petrović
,
S.
Kojić
,
A.
Thiha
,
K.
Joseph
,
N. F.
Jamaluddin
, and
G. M.
Stojanović
, “
Advances in textile-based microfluidics for biomolecule sensing
,”
Biomicrofluidics
18
(
5
),
51502
(
2024
).
13.
J.
Song
,
S.
Meng
,
J.
Liu
, and
N.
Chen
, “
Processing and inspection of high-pressure microfluidics systems: A review
,”
Biomicrofluidics
19
(
1
),
11501
(
2025
).
14.
S. C.
Fernandes
,
J. A.
Walz
,
D. J.
Wilson
,
J. C.
Brooks
, and
C. R.
Mace
, “
Beyond wicking: Expanding the role of patterned paper as the foundation for an analytical platform
,”
Anal. Chem.
89
(
11
),
5654
5664
(
2017
).
15.
X.
Liu
,
X.
Yang
,
K.
Li
,
H.
Liu
,
R.
Xiao
,
W.
Wang
,
C.
Wang
, and
S.
Wang
, “
Fe3O4@Au SERS tags-based lateral flow assay for simultaneous detection of serum amyloid A and C-reactive protein in unprocessed blood sample
,”
Sens. Actuators, B
320
,
128350
(
2020
).
16.
H.
Li
,
D.
Han
,
M. A.
Hegener
,
G. M.
Pauletti
, and
A. J.
Steckl
, “
Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices
,”
Biomicrofluidics
11
(
2
),
24116
(
2017
).
17.
P.
Sastre
,
C.
Gallardo
,
A.
Monedero
,
T.
Ruiz
,
M.
Arias
,
A.
Sanz
, and
P.
Rueda
, “
Development of a novel lateral flow assay for detection of African swine fever in blood
,”
BMC Vet. Res.
12
(
1
),
206
(
2016
).
18.
A.
Dector
,
J.
Galindo-de-la-Rosa
,
D. M.
Amaya-Cruz
,
A.
Ortíz-Verdín
,
M.
Guerra-Balcázar
,
J. M.
Olivares-Ramírez
,
L. G.
Arriaga
, and
J.
Ledesma-García
, “
Towards autonomous lateral flow assays: Paper-based microfluidic fuel cell inside an HIV-test using a blood sample as fuel
,”
Int. J. Hydrogen Energy
42
(
46
),
27979
27986
(
2017
).
19.
C. K. W.
Koo
,
F.
He
, and
S. R.
Nugen
, “
An inkjet-printed electrowetting valve for paper-fluidic sensors
,”
Analyst
138
(
17
),
4998
5004
(
2013
).
20.
J.
Saidykhan
,
L.
Pointon
,
S.
Cinti
,
J. E.
May
, and
A. J.
Killard
, “
Development of a paper-based lateral flow prothrombin assay
,”
Anal. Methods
14
(
38
),
3718
3726
(
2022
).
21.
V. C.
Özalp
,
U. S.
Zeydanlı
,
A.
Lunding
,
M.
Kavruk
,
M. T.
Öz
,
F.
Eyidoğan
,
L. F.
Olsen
, and
H. A.
Öktem
, “
Nanoparticle embedded enzymes for improved lateral flow sensors
,”
Analyst
138
(
15
),
4255
4259
(
2013
).
22.
A. N.
Baker
,
G. W.
Hawker-Bond
,
P. G.
Georgiou
,
S.
Dedola
,
R. A.
Field
, and
M. I.
Gibson
, “
Glycosylated gold nanoparticles in point of care diagnostics: From aggregation to lateral flow
,”
Chem. Soc. Rev.
51
(
16
),
7238
7259
(
2022
).
23.
S. S.
Chandrasekaran
,
S.
Agrawal
,
A.
Fanton
,
A. R.
Jangid
,
B.
Charrez
,
A. M.
Escajeda
,
S.
Son
,
R.
Mcintosh
,
H.
Tran
,
A.
Bhuiya
,
M. D.
de León Derby
,
N. A.
Switz
,
M.
Armstrong
,
A. R.
Harris
,
N.
Prywes
,
M.
Lukarska
,
S. B.
Biering
,
D. C. J.
Smock
,
A.
Mok
,
G. J.
Knott
,
Q.
Dang
,
E.
Van Dis
,
E.
Dugan
,
S.
Kim
,
T. Y.
Liu
,
J. R.
Hamilton
,
E.
Lin-Shiao
,
E. C.
Stahl
,
C. A.
Tsuchida
,
P.
Giannikopoulos
,
M.
McElroy
,
S.
McDevitt
,
A.
Zur
,
I.
Sylvain
,
A.
Ciling
,
M.
Zhu
,
C.
Williams
,
A.
Baldwin
,
E. A.
Moehle
,
K.
Kogut
,
B.
Eskenazi
,
E.
Harris
,
S. A.
Stanley
,
L. F.
Lareau
,
M. X.
Tan
,
D. A.
Fletcher
,
J. A.
Doudna
,
D. F.
Savage
,
P. D.
Hsu
, and
I. G. I. T.
Consortium
, “
Rapid detection of SARS-CoV-2 RNA in saliva via Cas13
,”
Nat. Biomed. Eng.
6
(
8
),
944
956
(
2022
).
24.
M.
Linares
,
R.
Pérez-Tanoira
,
A.
Carrero
,
J.
Romanyk
,
F.
Pérez-García
,
P.
Gómez-Herruz
,
T.
Arroyo
, and
J.
Cuadros
, “
Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms
,”
J. Clin. Virol.
133
,
104659
(
2020
).
25.
G. W.
Schmid-Schonbein
,
Y. Y.
Shih
, and
S.
Chien
, “
Morphometry of human leukocytes
,”
Blood
56
(
5
),
866
875
(
1980
).
26.
D.
Rath
,
N.
Sathishkumar
, and
B. J.
Toley
, “
Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices
,”
Langmuir
34
(
30
),
8758
8766
(
2018
).
27.
D.
Rath
and
S.
Panda
, “
Correlation of capture efficiency with the geometry, transport, and reaction parameters in heterogeneous immunosensors
,”
Langmuir
32
(
5
),
1410
1418
(
2016
).
28.
D.
Rath
,
S.
Kumar
, and
S.
Panda
, “
Enhancement of antigen–antibody kinetics on nanotextured silicon surfaces in mixed non-flow systems
,”
Mater. Sci. Eng., C
32
(
8
),
2223
2229
(
2012
).
29.
D.
Rath
and
B. J.
Toley
, “
Modeling-guided design of paper microfluidic networks: A case study of sequential fluid delivery
,”
ACS Sens.
6
(
1
),
91
99
(
2021
).
30.
A.
Hamraoui
and
T.
Nylander
, “
Analytical approach for the Lucas–Washburn equation
,”
J. Colloid Interface Sci.
250
(
2
),
415
421
(
2002
).
31.
J.
Cai
,
T.
Jin
,
J.
Kou
,
S.
Zou
,
J.
Xiao
, and
Q.
Meng
, “
Lucas–Washburn equation-based modeling of capillary-driven flow in porous systems
,”
Langmuir
37
(
5
),
1623
1636
(
2021
).
32.
L.
Hanžič
,
L.
Kosec
, and
I.
Anžel
, “
Capillary absorption in concrete and the Lucas–Washburn equation
,”
Cem. Concr. Compos.
32
(
1
),
84
91
(
2010
).
33.
D. I.
Dimitrov
,
A.
Milchev
, and
K.
Binder
, “
Capillary rise in nanopores: Molecular dynamics evidence for the Lucas-Washburn equation
,”
Phys. Rev. Lett.
99
(
5
),
54501
(
2007
).
34.
J.
Abbasi
and
P.Ø.
Andersen
, “
Theoretical comparison of two setups for capillary pressure measurement by centrifuge
,”
Heliyon
8
(
9
),
e10656
(
2022
).
35.
G. L.
Hassler
and
E.
Brunner
, “
Measurement of capillary pressures in small core samples
,”
Trans. AIME
160
(
01
),
114
123
(
1945
).
36.
M. Th.
van Genuchten
, “
A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
,”
Soil Sci. Soc. Am. J.
44
,
892
898
(
1980
).
37.
A. J.
Desbarats
, “
Upscaling capillary pressure-saturation curves in heterogeneous porous media
,”
Water Resour. Res.
31
(
2
),
281
288
(
1995
).
38.
G. S.
Gerlero
,
Z. I.
Guerenstein
,
N.
Franck
,
C. L. A.
Berli
, and
P. A.
Kler
, “
Comprehensive numerical prototyping of paper-based microfluidic devices using open-source tools
,”
Talanta Open
10
,
100350
(
2024
).
39.
G. S.
Gerlero
,
A. R.
Valdez
,
R.
Urteaga
, and
P. A.
Kler
, “
Validity of capillary imbibition models in paper-based microfluidic applications
,”
Transp. Porous Media
141
(
2
),
359
378
(
2022
).
40.
D.
Das
,
T.
Singh
,
I.
Ahmed
,
M.
Masetty
, and
A.
Priye
, “
Effects of relative humidity and paper geometry on the imbibition dynamics and reactions in lateral flow assays
,”
Langmuir
38
(
32
),
9863
9873
(
2022
).
41.
S.
Patari
and
P. S.
Mahapatra
, “
Liquid wicking in a paper strip: An experimental and numerical study
,”
ACS Omega
5
(
36
),
22931
22939
(
2020
).
42.
Y.
Wang
,
D.
Ye
,
X.
Zhu
,
Y.
Yang
,
C.
Qin
,
R.
Chen
, and
Q.
Liao
, “
Spontaneous imbibition in paper-based microfluidic devices: Experiments and numerical simulations
,”
Langmuir
38
(
8
),
2677
2685
(
2022
).
43.
K. E.
Nelson
and
T. R.
Ginn
, “
Colloid filtration theory and the Happel sphere-in-cell model revisited with direct numerical simulation of colloids
,”
Langmuir
21
(
6
),
2173
2184
(
2005
).
44.
H.
Wang
,
H.
Zhao
,
Z.
Guo
, and
C.
Zheng
, “
Numerical simulation of particle capture process of fibrous filters using Lattice Boltzmann two-phase flow model
,”
Powder Technol.
227
,
111
122
(
2012
).
45.
C. S.
Wang
and
Y.
Otani
, “
Removal of nanoparticles from gas streams by fibrous filters: A review
,”
Ind. Eng. Chem. Res.
52
(
1
),
5
17
(
2013
).
46.
J.
Payen
,
P.
Vroman
,
M.
Lewandowski
,
A.
Perwuelz
,
S.
Callé-Chazelet
, and
D.
Thomas
, “
Influence of fiber diameter, fiber combinations and solid volume fraction on air filtration properties in nonwovens
,”
Text. Res. J.
82
(
19
),
1948
1959
(
2012
).
47.
D.
Fan
,
E.
Chapman
,
A.
Khan
,
F.
Iacoviello
,
G.
Mikutis
,
R.
Pini
, and
A.
Striolo
, “
Anomalous transport of colloids in heterogeneous porous media: A multi-scale statistical theory
,”
J. Colloid Interface Sci.
617
,
94
105
(
2022
).
48.
G.
Boccardo
,
D. L.
Marchisio
, and
R.
Sethi
, “
Microscale simulation of particle deposition in porous media
,”
J. Colloid Interface Sci.
417
,
227
237
(
2014
).
49.
D.
Gasperino
,
T.
Baughman
,
H. V.
Hsieh
,
D.
Bell
, and
B. H.
Weigl
, “
Improving lateral flow assay performance using computational modeling
,”
Annu. Rev. Anal. Chem.
11
(
2018
),
219
244
(
2018
).
50.
R. H.
Brooks
and
A. T.
Corey
, “
Properties of porous media affecting fluid flow
,”
J. Irrig. Drain. Div.
92
(
2
),
61
88
(
1966
).
51.
R.
Nalumachu
,
A.
Anandita
, and
D.
Rath
, “
Computational modelling of a competitive immunoassay in lateral flow diagnostic devices
,”
Sens. Diagn.
2
(
3
),
687
698
(
2023
).
52.
Y. K.
Oh
,
H.-A.
Joung
,
H. S.
Han
,
H.-J.
Suk
, and
M.-G.
Kim
, “
A three-line lateral flow assay strip for the measurement of C-reactive protein covering a broad physiological concentration range in human sera
,”
Biosens. Bioelectron.
61
,
285
289
(
2014
).
53.
S.
Qian
and
H. H.
Bau
, “
A mathematical model of lateral flow bioreactions applied to sandwich assays
,”
Anal. Biochem.
322
(
1
),
89
98
(
2003
).
You do not currently have access to this content.