Deterministic lateral displacement (DLD) is a popular technique for the size-based separation of particles. A key challenge in the design of DLD chips is to eliminate the fluid flow disturbance caused by channel sidewalls intersecting with pillar matrix. While there are numerous reports attempting to mitigate this issue by adjusting the gaps between pillars on the sidewalls and the closest ones residing on the bulk grid of DLD, there are only a few works that also configure the axial gap of pillars adjacent to the accumulation sidewall. Herein, we study various designs numerically to investigate the effects of geometrical configurations of sidewalls on the critical diameter and first stream flux fraction variations across the channel. Our results show that regardless of the model used for the boundary gap profile, applying a pressure balance scheme can improve the separation performance by reducing the critical diameter variations. In particular, we found that for a given boundary gap distribution, there can be two desired parameter sets with relatively low critical diameter variations. One is related to sufficiently low lateral resistance of interface unit cells next to the accumulation sidewall, while the other one emerges by reducing the axial resistance of the interface unit cells to an appropriate extent. This work should pave the way for designing DLD systems with improved performance, which can be critically important for applications such as the separation of rare cells, among others, wherein target species need to be concentrated into as narrow a stream as possible downstream of the device to enhance purity and the recovery rate simultaneously.

1.
A.
Munaz
,
M. J. A.
Shiddiky
, and
N.-T.
Nguyen
, “
Recent advances and current challenges in magnetophoresis based micro magnetofluidics
,”
Biomicrofluidics
12
(
3
),
031501
(
2018
).
2.
R.
Pethig
, “
Review article—Dielectrophoresis: Status of the theory, technology, and applications
,”
Biomicrofluidics
4
(
2
),
022811
(
2010
).
3.
H.
Zhang
,
H.
Chang
, and
P.
Neuzil
, “
DEP-on-a-chip: Dielectrophoresis applied to microfluidic platforms
,”
Micromachines
10
(
6
),
423
(
2019
).
4.
M.
Wu
,
A.
Ozcelik
,
J.
Rufo
,
Z.
Wang
,
R.
Fang
, and
T.
Jun Huang
, “
Acoustofluidic separation of cells and particles
,”
Microsyst. Nanoeng.
5
,
32
(
2019
).
5.
J.
Zhou
and
I.
Papautsky
, “
Viscoelastic microfluidics: Progress and challenges
,”
Microsyst. Nanoeng.
6
(
1
),
113
(
2020
).
6.
D.
Di Carlo
, “
Inertial microfluidics
,”
Lab-on-a-Chip
9
(
21
),
3038
(
2009
).
7.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N.-T.
Nguyen
,
M. E.
Warkiani
, and
W.
Li
, “
Fundamentals and applications of inertial microfluidics: A review
,”
Lab-on-a-Chip
16
(
1
),
10
34
(
2015
).
8.
H. M.
Ji
,
V.
Samper
,
Y.
Chen
,
C. K.
Heng
,
T. M.
Lim
, and
L.
Yobas
, “
Silicon-based microfilters for whole blood cell separation
,”
Biomed. Microdevices
10
(
2
),
251
257
(
2008
).
9.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous particle separation through deterministic lateral displacement
,”
Science
304
(
5673
),
987
990
(
2004
).
10.
M.
Yamada
,
M.
Nakashima
, and
M.
Seki
, “
Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel
,”
Anal. Chem.
76
(
18
),
5465
5471
(
2004
).
11.
J.
Takagi
,
M.
Yamada
,
M.
Yasuda
, and
M.
Seki
, “
Continuous particle separation in a microchannel having asymmetrically arranged multiple branches
,”
Lab-on-a-Chip
5
(
7
),
778
784
(
2005
).
12.
M.
Yamada
and
M.
Seki
, “
Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics
,”
Lab-on-a-Chip
5
(
11
),
1233
(
2005
).
13.
S.
Yang
,
A.
Ündar
, and
J. D.
Zahn
, “
A microfluidic device for continuous, real time blood plasma separation
,”
Lab-on-a-Chip
6
(
7
),
871
880
(
2006
).
14.
W.
Liang
,
R. H.
Austin
, and
J. C.
Sturm
, “
Scaling of deterministic lateral displacement devices to a single column of bumping obstacles
,”
Lab-on-a-Chip
20
(
18
),
3461
3467
(
2020
).
15.
B. H.
Wunsch
,
S.-C.
Kim
,
S. M.
Gifford
,
Y.
Astier
,
C.
Wang
,
R. L.
Bruce
,
J. V.
Patel
,
E. A.
Duch
,
S.
Dawes
,
G.
Stolovitzky
, and
J. T.
Smith
, “
Gel-on-a-chip: Continuous, velocity-dependent DNA separation using nanoscale lateral displacement
,”
Lab-on-a-Chip
19
(
9
),
1567
1578
(
2019
).
16.
B. H.
Wunsch
,
J. T.
Smith
,
S. M.
Gifford
,
C.
Wang
,
M.
Brink
,
R. L.
Bruce
,
R. H.
Austin
,
G.
Stolovitzky
, and
Y.
Astier
, “
Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm
,”
Nat. Nanotechnol.
11
(
11
),
936
940
(
2016
).
17.
J. T.
Smith
,
B. H.
Wunsch
,
N.
Dogra
,
M. E.
Ahsen
,
K.
Lee
,
K. K.
Yadav
,
R.
Weil
,
M. A.
Pereira
,
J. V.
Patel
,
E. A.
Duch
,
J. M.
Papalia
,
M. F.
Lofaro
,
M.
Gupta
,
A. K.
Tewari
,
C.
Cordon-Cardo
,
G.
Stolovitzky
, and
S. M.
Gifford
, “
Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples
,”
Lab-on-a-Chip
18
(
24
),
3913
3925
(
2018
).
18.
J. A.
Davis
,
D. W.
Inglis
,
K. J.
Morton
,
D. A.
Lawrence
,
L. R.
Huang
,
S. Y.
Chou
,
J. C.
Sturm
, and
R. H.
Austin
, “
Deterministic hydrodynamics: Taking blood apart
,”
Proc. Natl. Acad. Sci.
103
(
40
),
14779
14784
(
2006
).
19.
T.
Salafi
,
Y.
Zhang
, and
Y.
Zhang
, “
A review on deterministic lateral displacement for particle separation and detection
,”
Nano-Micro Lett.
11
(
1
),
77
(
2019
).
20.
D. W.
Inglis
,
J. A.
Davis
,
R. H.
Austin
, and
J. C.
Sturm
, “
Critical particle size for fractionation by deterministic lateral displacement
,”
Lab-on-a-Chip
6
(
5
),
655
658
(
2006
).
21.
J. A.
Davis
, “Microfluidic separation of blood components through deterministic lateral displacement,” Ph.D. thesis (Princeton University, 2008), https://swh.princeton.edu/∼sturmlab/theses/Davis-Thesis.pdf.
22.
D. W.
Inglis
, “
Efficient microfluidic particle separation arrays
,”
Appl. Phys. Lett.
94
(
1
),
013510
(
2009
).
23.
E.
Pariset
,
C.
Pudda
,
F.
Boizot
,
N.
Verplanck
,
J.
Berthier
,
A.
Thuaire
, and
V.
Agache
, “
Anticipating cutoff diameters in deterministic lateral displacement (DLD) microfluidic devices for an optimized particle separation
,”
Small
13
(
37
),
1701901
(
2017
).
24.
S.
Feng
,
A. M.
Skelley
,
A. G.
Anwer
,
G.
Liu
, and
D. W.
Inglis
, “
Maximizing particle concentration in deterministic lateral displacement arrays
,”
Biomicrofluidics
11
(
2
),
024121
(
2017
).
25.
A.
Ebadi
,
M. J.
Farshchi Heydari
,
R.
Toutouni
,
B.
Chaichypour
,
M.
Fathipour
, and
K.
Jafari
, “
Efficient paradigm to enhance particle separation in deterministic lateral displacement arrays
,”
SN Appl. Sci.
1
(
10
),
1184
(
2019
).
26.
D.
Inglis
,
R.
Vernekar
,
T.
Krüger
, and
S.
Feng
, “
The fluidic resistance of an array of obstacles and a method for improving boundaries in deterministic lateral displacement arrays
,”
Microfluid. Nanofluid.
24
(
3
),
18
(
2020
).
27.
A.
Mehboudi
,
S.
Singhal
, and
S. V.
Sreenivasan
, “
A universal framework for design and manufacture of deterministic lateral displacement chips
,”
Lab-on-a-Chip
25
(
6
),
1521
1536
(
2025
).
28.
A.
Mehboudi
, see https://zenodo.org/doi/10.5281/zenodo.14357811 for “mnFlow: A package for micro/nanoflow” (2024).
29.
A.
Mehboudi
,
S.
Singhal
, and
S. V.
Sreenivasan
, “
A tracking algorithm for finite-size particles
,”
Biomicrofluidics
19
,
034103
(
2025
).
30.
S. H.
Au
,
J.
Edd
,
A. E.
Stoddard
,
K. H. K.
Wong
,
F.
Fachin
,
S.
Maheswaran
,
D. A.
Haber
,
S. L.
Stott
,
R.
Kapur
, and
M.
Toner
, “
Microfluidic isolation of circulating tumor cell clusters by size and asymmetry
,”
Sci. Rep.
7
,
2433
(
2017
).
31.
A.
Mehboudi
, see https://mnflow.readthedocs.io/en/latest/ for “mnFlow Documentation” (2024).
You do not currently have access to this content.