With the transport of soft and multiphase systems such as droplets and vesicles, the controlled movement of these systems could be regulated in microfluidic channels using an external electrical field is a convenient method for further studying and even tuning micro-transport behaviors. The electric field induces complex electrohydrodynamic behaviors in such systems with considerable impact on their deformation, motion, and interaction with the surrounding fluid. Introducing an electric field exerts stresses at the interface of these fluids, which ensures precise control over their deformation and motion with the features of droplets or vesicles that are vital for their subsequent manipulation inside confined microchannels. Here, electrically modulated transport dynamics in soft multiphase systems, specifically droplets and vesicles, in microfluidic systems are studied meticulously. In this review work, we study how the electric field strength, fluid properties, and membrane characteristics, all of which are important to the directed motion of these systems, are coupled to one another. It also notes that vesicles, with their bilayer lipid membranes, have unique dynamics—such as the formation of membrane tensions and bending rigidity—that affect their electrohydrodynamic behaviors, unlike simple droplets. Studying the electrically driven dynamics of the soft matter, this review offers useful perspectives on the creation of next-generation microfluidics devices, ranging from drug delivery to synthetic biology and materials manufacturing. The effects of the field strength, frequency, and geometry on the transport properties of the droplets and vesicles and highlighting the rich interplay between the electrostatic forces and the inherent properties of soft matter are studied systematically. Recent advances in experimental methods (such as high-precision imaging, micro-manipulation, and sophisticated computational modeling) have also taken our understanding of these electrohydrodynamic processes to new heights. This review further explores potential applications of these technologies in lab-on-a-chip platforms, drug delivery systems, and bioanalytical tools and highlights challenges, including stability, scalability, and reproducibility. The conclusion includes proposed directions for future research aimed at enhancing the localization, control, and efficiency of electrokinetic manipulation in soft matter-based microfluidic systems.

1.
L.
Li
, “
Latest progress and applications of multiphase flow and heat transfer
,”
Appl. Sci.
14
(
8
),
3369
(
2024
).
2.
S.
Lingadahalli Kotreshappa
,
C. G.
Nayak
, and
S.
Krishnan Venkata
, “
A review on the role of microflow parameter measurements for microfluidics applications
,”
Systems
11
(
3
),
113
(
2023
).
3.
K.
Wang
,
L.
Li
,
P.
Xie
, and
G.
Luo
, “
Liquid–liquid microflow reaction engineering
,”
React. Chem. Eng.
2
(
5
),
611
627
(
2017
).
4.
B.
Wen
,
C.
Sun
,
Z.
Luo
,
X.
Lu
,
H.
Wang
, and
B.
Bai
, “
A hydrogen bond-modulated soft nanoscale water channel for ion transport through liquid–liquid interfaces
,”
Soft Matter
17
(
42
),
9736
9744
(
2021
).
5.
J. R.
Melcher
and
G. I.
Taylor
, “
Electrohydrodynamics: A review of the role of interfacial shear stresses
,”
Ann. Rev. Fluid Mech.
1
,
111
146
(
1969
).
6.
T. B.
Jones
,
Electromechanics of Particles
(
Cambridge University Press
,
1995
).
7.
D. A.
Saville
, “
Electrohydrodynamics: The Taylor-Melcher leaky dielectric model
,”
Ann. Rev. Fluid Mech.
29
,
27
64
(
1997
).
8.
R.
Dimova
, “
Recent developments in the field of bending rigidity measurements on membranes
,”
Adv. Colloid Interface Sci.
208
,
225
234
(
2014
).
9.
G.
Quincke
, “
Ueber eine neue art electrischer Strömung
,”
Ann. Phys.
183
(
5
),
1
147
(
1859
).
10.
H. A.
Stone
and
S.
Kim
, “
Microfluidics: Basic issues, applications, and challenges
,”
AIChE J.
47
(
6
),
1250
1254
(
2001
).
11.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature
442
(
7101
),
368
373
(
2006
).
12.
J. Q.
Feng
and
J. A.
Scott
, “
A computational model of electrohydrodynamics of a leaky dielectric microdroplet suspended in a viscous medium
,”
J. Colloid Interface Sci.
263
(
2
),
400
410
(
2003
).
13.
E.
Lac
and
G. M.
Homsy
, “
Axisymmetric deformation and stability of a viscous drop in a steady electric field
,”
J. Fluid Mech.
590
,
239
264
(
2007
).
14.
M.
Li
,
D.
Yang
,
Q.
Li
,
Y.
Liang
,
C.
Chen
, and
L.
He
, “
Optimizing and regulating electric-induced breakup of salt-containing droplets through magnetic field coupling: Insights from molecular dynamics simulations
,”
Langmuir
41
(
8
),
5097
5111
(
2025
).
15.
P. P.
Das
,
M.
Sharma
, and
M. K.
Purkait
, “
Recent progress on electrocoagulation process for wastewater treatment: A review
,”
Sep. Purif. Technol.
292
,
121058
(
2022
).
16.
Y.
Zhang
,
H.
Cui
,
B. P.
Binks
, and
H. C.
Shum
, “
Liquid marbles under electric fields: New capabilities for non-wetting droplet manipulation and beyond
,”
Langmuir
38
(
32
),
9721
9740
(
2022
).
17.
C.
Qi
,
Y.
Li
,
Z.
Liu
, and
T.
Kong
, “
Electrohydrodynamics of droplets and jets in multiphase microsystems
,”
Soft Matter
16
(
37
),
8526
8546
(
2020
).
18.
W.
Chu
,
H.
Ji
,
Q.
Wang
,
C.-J.
Kim
, and
A. L.
Bertozzi
, “
Electrohydrodynamics modeling of droplet actuation on a solid surface by surfactant-mediated electrodewetting
,”
Phys. Rev. Fluids
8
(
7
),
073701
(
2023
).
19.
M. S.
Abbasi
,
R.
Song
,
S.
Cho
, and
J.
Lee
, “
Electro-hydrodynamics of emulsion droplets: Physical insights to applications
,”
Micromachines
11
(
10
),
942
(
2020
).
20.
M.
Wang
and
X.
Yi
, “
Area difference between monolayers facilitates budding of lipid droplets from vesicles
,”
Soft Matter
19
(
39
),
7494
7501
(
2023
).
21.
G.
Hao
,
L.
Lv
,
W.
Yu
,
X.
Liu
, and
Y.
Chen
, “
Droplet electrohydrodynamic deformation in a shear flow field
,”
Phys. Fluids
36
(
3
),
032121
(
2024
).
22.
B.
Wu
and
S.
Veerapaneni
, “
Electrohydrodynamics of deflated vesicles: Budding, rheology and pairwise interactions
,”
J. Fluid Mech.
867
,
334
347
(
2019
).
23.
P. M.
Vlahovska
, “
Electrohydrodynamics of drops and vesicles
,”
Ann. Rev. Fluid Mech.
51
,
305
330
(
2019
).
24.
T.
Kahali
,
A.
Poddar
,
J.
Dhar
, and
S.
Chakraborty
, “Charged obstacles augment electrokinetic energy conversion efficiency,” arXiv:1712.01201 (
2017
).
25.
W.
Zeng
,
S.
Li
, and
H.
Fu
, “
Precise control of the pressure-driven flows considering the pressure fluctuations induced by the process of droplet formation
,”
Microfluid. Nanofluid.
22
,
133
(
2018
).
26.
J. M.
Barakat
,
S. M.
Ahmmed
,
S. A.
Vanapalli
, and
E. S. G.
Shaqfeh
, “
Pressure-driven flow of a vesicle through a square microchannel
,”
J. Fluid Mech.
861
,
447
483
(
2019
).
27.
D.
Shayunusov
,
D.
Eskin
,
H.
Zeng
, and
P. A.
Nikrityuk
, “
Behavior of small water droplets in a highly viscous flow in a converging and diverging channel
,”
Phys. Fluids
36
(
3
),
033333
(
2024
).
28.
Q.
Li
,
H.
Zhu
,
S.
Lu
,
M.
Lei
,
W.
Xu
, and
Z.
Liu
, “
Numerical investigation on formation mechanism and flow law of droplet in T-junction by electric field
,”
Phys. Fluids
35
(
6
),
062007
(
2023
).
29.
A.
Lafzi
, “
Inertial migration of deformable capsules and droplets in oscillatory and pulsating microchannel flows
,”
Doctoral dissertation
(
Purdue University
,
2022
).
30.
C.
Lin
,
D.
Kumar
,
C. M.
Richter
,
S.
Wang
,
C. M.
Schroeder
, and
V.
Narsimhan
, “
Vesicle dynamics in large amplitude oscillatory extensional flow
,”
J. Fluid Mech.
929
,
A43
(
2021
).
31.
X.
Liu
,
L.
Li
,
J.
Yu
,
G.
Hao
,
W.
Yu
, and
Y.
Chen
, “
Electric field mediated droplet spheroidizing in an extensional flow
,”
Phys. Fluids
33
(
5
),
052116
(
2021
).
32.
B.
Mohanty
and
A.
Bandopadhyay
, “
Electrohydrodynamic deformation of a compound droplet in an alternating current and direct current superposed electric field
,”
Phys. Fluids
36
(
5
),
052010
(
2024
).
33.
S.
Torza
,
R. G.
Cox
, and
S. G.
Mason
, “
Electrohydrodynamic deformation and burst of liquid drops
,”
Philos. Trans. R. Soc. London, Ser. A
269
(
1198
),
295
319
(
1971
).
34.
Q.
Zhang
,
Y.
Zhou
, and
O. A.
Basaran
, “
Computational analysis of electrohydrodynamic processes in compound drops in axisymmetric configurations
,”
Phys. Fluids
27
(
3
),
032108
(
2015
).
35.
H.
Sato
,
N.
Kaji
,
T.
Mochizuki
, and
Y. H.
Mori
, “
Behavior of oblately deformed droplets in an immiscible dielectric liquid under a steady and uniform electric field
,”
Phys. Fluids
18
(
12
),
127101
(
2006
).
36.
H.
Xu
,
J.
Wang
,
J.
Tian
,
B.
Li
,
J.
Yao
,
L.
Zuo
,
Y.
Zhang
, and
T.
Zhao
, “
Electrohydrodynamic disintegration of dielectric fluid blended with ethanol
,”
Phys. Fluids
33
(
6
),
062107
(
2021
).
37.
Q.
Yang
,
Z.
Wang
,
Y.
Zhao
,
F.
Zhang
, and
Q.
Gao
, “
Electro-hydrodynamics study of double emulsion droplet formation in a double Y-shaped channel
,”
Phys. Fluids
36
(
9
),
092015
(
2024
).
38.
Z.
Zhou
,
H.
Liu
, and
Y.
Zhang
, “
Electrohydrodynamics of multiphase droplets: A review on theoretical models, experiments, and applications
,”
Adv. Colloid Interface Sci.
288
,
102341
(
2021
).
39.
S. K.
Das
,
A.
Dalal
, and
G.
Tomar
, “
Electrohydrodynamic-induced interactions between droplets
,”
J. Fluid Mech.
915
,
A88
(
2021
).
40.
S. L.
Anna
,
N.
Bontoux
, and
H. A.
Stone
, “
Formation of dispersions using ‘flow focusing’ in microchannels
,”
Appl. Phys. Lett.
82
(
3
),
364
366
(
2003
).
41.
M. P.
Boruah
,
P. R.
Randive
,
S.
Pati
, and
K. C.
Sahu
, “
Charge convection and interfacial deformation of a compound drop in plane Poiseuille flow under an electric field
,”
Phys. Rev. Fluids
7
(
1
),
013703
(
2022
).
42.
J.
Wang
,
Z.
Liu
,
Y.
Pang
,
M.
Li
, and
Q.
Zhou
, “
Breakup of compound jets with inner droplets in a capillary flow-focusing device
,”
Phys. Fluids
33
(
1
),
013304
(
2021
).
43.
F.
Peng
,
Z.
Wang
,
Y.
Fan
,
Q.
Yang
, and
J.
Chen
, “
Study on the interfacial dynamics of free oscillatory deformation and breakup of single-core compound droplet
,”
Phys. Fluids
34
(
4
),
042009
(
2022
).
44.
Z.
Xu
,
Y.
Zhang
,
T.
Wang
, and
Z.
Che
, “
Deformation and breakup of compound droplets in airflow
,”
J. Colloid Interface Sci.
653
(
Pt A
),
517
527
(
2024
).
45.
N.-T.
Nguyen
,
M.
Hejazian
,
C. H.
Ooi
, and
N.
Kashaninejad
, “
Recent advances and future perspectives on microfluidic liquid handling
,”
Micromachines
8
(
6
),
186
(
2017
).
46.
L.
Li
and
C.
Zhang
, “
Electro-hydrodynamics of droplet generation in a co-flowing microfluidic device under electric control
,”
Colloids Surf. A
586
,
124258
(
2020
).
47.
A.
Behjatian
and
A.
Esmaeeli
, “
Transient electrohydrodynamics of compound drops
,”
Acta Mech.
226
,
2581
2606
(
2015
). https://link.springer.com/article/10.1007/s00707-015-1335-1
48.
C.-G.
Yang
,
Z.-R.
Xu
, and
J.-H.
Wang
,
“Manipulation of droplets in microfluidic systems
,”
TrAC Trends Anal. Chem.
29
(
2
),
141
157
(
2010
).
49.
K.
Iranshahi
,
T.
Defraeye
,
R. M.
Rossi
, and
U. C.
Müller
, “
Electrohydrodynamics and its applications: Recent advances and future perspectives
,”
Int. J. Heat Mass Transfer
232
,
125895
(
2024
).
50.
A.
Ahmadi
,
J. F.
Holzman
,
H.
Najjaran
, and
M.
Hoorfar
, “
Electrohydrodynamic modeling of microdroplet transient dynamics in electrocapillary-based digital microfluidic devices
,”
Microfluid. Nanofluid.
10
,
1019
1032
(
2011
). https://link.springer.com/article/10.1007/s10404-010-0731-z
51.
M. P.
Borthakur
,
B.
Nath
, and
G.
Biswas
, “
Dynamics of a compound droplet under the combined influence of electric field and shear flow
,”
Phys. Rev. Fluids
6
(
2
),
023603
(
2021
).
52.
G.
Hao
,
L.
Lv
,
W.
Yu
,
X.
Liu
, and
Y.
Chen
, “
Droplet electrohydrodynamic deformation in a shear flow field
,”
Phys. Fluids
36
(
3
),
032121
(
2024
).
53.
D.
Wang
,
J.
Wang
,
P.
Yongphet
,
X.
Wang
,
Z.
Zuo
,
B.
Li
, and
W.
Zhang
, “
Experimental study on electric-field-induced droplet generation and breakup in an immiscible medium
,”
Exp. Fluids
61
,
78
(
2020
). https://link.springer.com/article/10.1007/s00348-020-2908-x
54.
W.
Li
,
Z.
Sun
,
N.
Li
,
S.
Weng
,
S.
Peng
,
T.
Liu
,
Y.
Xie
, and
Y.
Chen
, “
Droplet coalescence in coupled shear and electric fields: A molecular dynamics study
,”
Sep. Purif. Technol.
342
,
127045
(
2024
).
55.
L.
Li
and
C.
Zhang
, “
Electro-hydrodynamics of droplet generation in a co-flowing microfluidic device under electric control
,”
Colloids Surf. A
586
,
124258
(
2020
).
56.
L.
Wu
,
Z.
Guo
, and
W.
Liu
. “
Surface behaviors of droplet manipulation in microfluidics devices
,”
Adv. Colloid Interface Sci.
308
,
102770
(
2022
).
57.
B.
Mohanty
and
A.
Bandopadhyay
, “
Electrohydrodynamic deformation of a confined droplet in an alternating current electric field: An analytical study
,”
Phys. Fluids
37
(
3
),
033620
(
2025
).
58.
W.
Yu
,
K.
Shen
,
X.
Liu
, and
Y.
Chen
, “
Electrohydrodynamics of compound liquid thread formation in a flow-focusing microchannel under an electric field
,”
Phys. Fluids
37
(
4
),
042003
(
2025
).
59.
C.
Narvaez-Munoz
,
A. R.
Hashemi
,
M. R.
Hashemi
,
L. J.
Segura
, and
P. B.
Ryzhakov
, “
Computational electrohydrodynamics in microsystems: A review of challenges and applications
,”
Arch. Comput. Methods Eng.
32
,
535
569
(
2025
). https://link.springer.com/article/10.1007/s11831-024-10147-x
60.
J.
Zhao
,
V.
Dzanic
,
Z.
Wang
, and
E.
Sauret
, “
Electrohydrodynamic effects on the viscoelastic droplet deformation in shear flows
,”
Phys. Fluids
37
(
1
),
013118
(
2025
).
61.
W.
Liu
and
J. M.
Park
, “
Ternary modelling of the interaction between immiscible droplets in a confined shear flow
,”
Phys. Rev. Fluids
7
(
1
),
013604
(
2022
).
62.
F.
Mugele
,
J.-C.
Baret
, and
D.
Steinhauser
, “
Microfluidic mixing through electrowetting-induced droplet oscillations
,”
Appl. Phys. Lett.
88
(
20
),
204106
(
2006
).
63.
T.
Kahali
,
S.
Santra
, and
S.
Chakraborty
, “
Electrically modulated cross-stream migration of a compound drop in micro-confined oscillatory flow
,”
Phys. Fluids
34
(
12
),
122015
(
2022
).
64.
H.
Liu
,
Y.
Lu
,
S.
Li
,
Y.
Yu
, and
K. C.
Sahu
, “
Deformation and breakup of a compound droplet in three-dimensional oscillatory shear flow
,”
Int. J. Multiphase Flow
134
,
103472
(
2021
).
65.
Z.
Xu
,
Y.
Zhang
,
T.
Wang
, and
Z.
Che
, “
Deformation and breakup of compound droplets in airflow
,”
J. Colloid Interface Sci.
653
,
517
527
(
2024
).
66.
A. P.
Iakovlev
,
A. S.
Erofeev
, and
P. V.
Gorelkin
, “
Novel pumping methods for microfluidic devices: A comprehensive review
,”
Biosensors
12
(
11
),
956
(
2022
).
67.
L.
Jiang
,
L.
Yu
,
P.
Premaratne
,
Z.
Zhang
, and
H.
Qin
, “
CFD-based numerical modeling to predict the dimensions of printed droplets in electrohydrodynamic inkjet printing
,”
J. Manuf. Process
66
,
125
132
(
2021
).
68.
Y.
Guo
,
Y.
Liu
,
T.
Hou
,
X.
Zhang
,
J.
Gao
,
J.
He
,
C.
Wang
,
J.
Wang
,
Q.
Zhao
,
Y.
Chan
, and
Y.
Ren
, “
Oscillatory flow driven microdroplet breakup dynamics and microparticle formation in LMPA-water two phase flow system
,”
Eng. Appl. Comput. Fluid Mech.
18
(
1
),
2315972
(
2024
).
69.
Z.
Wang
,
Y.
Chen
,
J.
Xue
,
B.
Li
,
J.
Wang
, and
Q.
Dong
, “
Electrospray modes of liquids in electrohydrodynamic atomization: A review
,”
Phys. Fluids
36
(
11
),
111304
(
2024
).
70.
G.
Hao
,
W.
Yu
,
L.
Lv
,
X.
Liu
, and
L. L.
Zhang
, “
Experimental investigation and theoretical prediction of droplet breakup under a combined electric field and shear flow field
,”
Chem. Eng. Sci.
287
,
119738
(
2024
).
71.
L.
Dai
,
Y.
Du
, and
L.
Qian
, “
Investigation of the dynamic characteristics of compound droplet impacting on microcolumn arrays
,”
Int. J. Multiphase Flow
187
,
105193
(
2025
).
72.
S.
Santra
and
S.
Chakraborty
, “
Steady axial electric field may lead to controllable cross-stream migration of droplets in confined oscillatory microflows
,”
J. Fluid Mech.
907
,
A8
(
2021
).
73.
R.
Singh
,
S. S.
Bahga
, and
A.
Gupta
, “
Electric field induced droplet deformation and breakup in confined shear flows
,”
Phys. Rev. Fluids
4
(
3
),
033701
(
2019
).
74.
G.
Li
and
D. L.
Koch
, “
Dynamics of a self-propelled compound droplet
,”
J. Fluid Mech.
952
,
A16
(
2022
).
75.
D.
Wang
,
J.
Wang
,
X.
Wang
,
Y.
Huo
, and
P.
Yongphet
, “
Experimental investigation on the deformation and breakup of charged droplets in dielectric liquid medium
,”
Int. J. Multiphase Flow
114
,
39
49
(
2019
).
76.
H.
Nganguia
,
Y.-N.
Young
,
P. M.
Vlahovska
,
J.
Blawzdziewicz
,
J.
Zhang
, and
H.
Lin
, “
Equilibrium electro-deformation of a surfactant-laden viscous drop
,”
Phys. Fluids
25
(
9
),
092106
(
2013
).
77.
Y.
Yao
,
Y.
Wang
, and
K. M.
Beussman
, “
Deformation and migration of a leaky-dielectric droplet in a steady non-uniform electric field
,”
Microfluid. Nanofluid.
17
,
907
921
(
2014
). https://link.springer.com/article/10.1007/s10404-014-1382-2
78.
S.
Santra
,
D. P.
Panigrahi
,
S.
Das
, and
S.
Chakraborty
, “
Shape evolution of compound droplet in combined presence of electric field and extensional flow
,”
Phys. Rev. Fluids
5
(
6
),
063602
(
2020
).
79.
S.
Sadasivan
,
S.
Pradeep
,
J. C.
Ramachandran
,
J.
Narayan
, and
M. J.
Gęca
,
Advances in droplet microfluidics: a comprehensive review of innovations, morphology, dynamics, and applications,”
Microfluid. Nanofluid.
29
,
17
(
2025
). https://link.springer.com/article/10.1007/s10404-025-02789-5
80.
N.
Li
,
Y.
Pang
,
Z.
Sun
,
Y.
Sun
,
Z.
Qi
,
W.
Li
,
Y.
Liu
,
B.
Li
,
Z.
Wang
, and
H.
Zeng
, “
Electric field-induced deformation and breakup of water droplets in polymer-flooding W/O emulsions: A simulation study
,”
Sep. Purif. Technol.
320
,
124237
(
2023
).
81.
G.
Hao
,
E.
Li
,
J.-X.
Li
,
H.
Zhang
,
M.
Zhong
,
X.
Liu
,
J.-X.
Wang
, and
Y.
Chen
, “
A deep learning perspective on electro-hydrodynamic micro-droplet interface deformation characteristics
,”
Chem. Eng. Sci.
276
,
118772
(
2023
).
82.
S.
Lanjewar
and
S.
Ramji
, “
Dynamics of a deformable compound droplet under pulsatile flow
,”
Phys. Fluids
36
(
8
),
083301
(
2024
).
83.
X.
Qu
and
Y.
Wang
, “
Dynamics of concentric and eccentric compound droplets suspended in extensional flows
,”
Phys. Fluids
24
(
12
),
123302
(
2012
).
84.
G.
Hao
,
L.
Li
,
W.
Gao
,
X.
Liu
, and
Y.
Chen
, “
Electric-field-controlled deformation and spheroidization of compound droplet in an extensional flow
,”
Int. J. Multiphase Flow
168
,
104559
(
2023
).
85.
S.
Santra
,
S.
Das
, and
S.
Chakraborty
, “
Electrically modulated dynamics of a compound droplet in a confined microfluidic environment
,”
J. Fluid Mech.
882
,
A23
(
2020
).
86.
S. K.
Das
,
A.
Dalal
, and
G.
Tomar
, “
Electrohydrodynamic-induced interactions between droplets
,”
J. Fluid Mech.
915
,
A88
(
2021
).
87.
J.
Zhao
,
V.
Dzanic
,
Z.
Wang
, and
E.
Sauret
, “
Electrohydrodynamic effects on the viscoelastic droplet deformation in shear flows
,”
Phys. Fluids
37
(
1
),
013118
(
2025
).
88.
S.
Santra
,
N.
Behera
, and
S.
Chakraborty
, “
Modulating droplet electrohydrodynamics via the interplay of extensional flow and an alternating current electric field
,”
Phys. Fluids
36
(
10
),
102017
(
2024
).
89.
S. A.
Vagner
and
S. A.
Patlazhan
, “
Flow-induced transition of compound droplet to composite microfiber in a channel with sudden contraction
,”
Phys. Fluids
35
(
3
),
032009
(
2023
).
90.
P.
Poureslami
,
M.
Majidi
,
J. R.
Kermani
, and
M. A.
Bijarchi
, “Deformation and breakup of a ferrofluid compound droplet migrating in a microchannel under a magnetic field: A phase-field-based multiple-relaxation time lattice Boltzmann study,” arXiv:2410.11129 (
2024
).
91.
J. T.
Schwalbe
,
P. M.
Vlahovska
, and
M. J.
Miksis
, “
Vesicle electrohydrodynamics
,”
Phys. Rev. E
83
(
4
),
046309
(
2011
).
92.
E. M.
Kolahdouz
and
D.
Salac
, “
Dynamics of three-dimensional vesicles in dc electric fields
,”
Phys. Rev. E
92
(
1
),
012302
(
2015
).
93.
H.
Nganguia
and
Y. N.
Young
, “
Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
,”
Phys. Rev. E
88
(
5
),
052718
(
2013
).
94.
D. L.
Perrier
,
L.
Rems
, and
P. E.
Boukany
, “
Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications
,”
Adv. Colloid Interface Sci.
249
,
248
271
(
2017
).
95.
Z.
Gou
,
H.
Zhang
,
A.
Nait-Ouhra
,
M.
Abbasi
,
A.
Farutin
, and
C.
Misbah
, “
Dynamics and rheology of vesicles under confined Poiseuille flow
,”
Soft Matter
19
(
46
),
9101
9114
(
2023
).
96.
D.
Liu
,
Z. H.
Zhang
,
R.
Wang
, and
J. L.
Hu
, “
Unsteady dynamics of vesicles in a confined Poiseuille flow
,”
Chin. J. Polym. Sci.
40
(
12
),
1679
1687
(
2022
).
97.
G.
Coupier
,
B.
Kaoui
,
T.
Podgorski
, and
C.
Misbah
, “
Noninertial lateral migration of vesicles in bounded Poiseuille flow
,”
Phys. Fluids
20
(
11
),
111702
(
2008
).
98.
H.
Noguchi
and
G.
Gompper
, “
Fluid vesicles with viscous membranes in shear flow
,”
Phys. Rev. Lett.
93
(
25
),
258102
(
2004
).
99.
B.
Kaoui
,
A.
Farutin
, and
C.
Misbah
, “
Vesicles under simple shear flow: Elucidating the role of relevant control parameters
,”
Phys. Rev. E
80
(
6
),
061905
(
2009
).
100.
P. F.
Salipante
and
P. M.
Vlahovska
, “
Vesicle deformation in DC electric pulses
,”
Soft Matter
10
(
19
),
3386
3393
(
2014
).
101.
C.
Misbah
, “
Vacillating breathing and tumbling of vesicles under shear flow
,”
Phys. Rev. Lett.
96
(
2
),
028104
(
2006
).
102.
K. P.
Sinha
and
R. M.
Thaokar
, “
Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime
,”
Phys. Rev. E
97
(
3
),
032404
(
2018
).
103.
B.
Quaife
,
S.
Veerapaneni
, and
Y. N.
Young
, “
Hydrodynamics and rheology of a vesicle doublet suspension
,”
Phys. Rev. Fluids
4
(
10
),
103601
(
2019
).
104.
Y.
Mori
and
Y. N.
Young
, “
From electrodiffusion theory to the electrohydrodynamics of leaky dielectrics through the weak electrolyte limit
,”
J. Fluid Mech.
855
,
67
130
(
2018
).
105.
M.
Degonville
,
G.
Boedec
, and
M.
Leonetti
, “
Oblate to prolate transition of a vesicle in shear flow
,”
Euro. Phys. J. E
42
,
116
(
2019
). https://link.springer.com/article/10.1140/epje/i2019-11881-0
106.
D.
Kumar
,
C. M.
Richter
, and
C. M.
Schroeder
, “
Conformational dynamics and phase behavior of lipid vesicles in a precisely controlled extensional flow
,”
Soft Matter
16
(
2
),
337
347
(
2020
).
107.
K.
Priti Sinha
,
S.
Das
,
R. B.
Karyappa
, and
R. M.
Thaokar
, “
Electrohydrodynamics of vesicles and capsules
,”
Langmuir
36
(
18
),
4863
4886
(
2020
).
108.
S.
Das
,
M.
Jaeger
,
M.
Leonetti
,
R. M.
Thaokar
, and
P. G.
Chen
, “
Effect of pulse width on the dynamics of a deflated vesicle in unipolar and bipolar pulsed electric fields
,”
Phys. Fluids
33
(
8
),
081905
(
2021
).
109.
M.
Rubio
,
P.
Rodríguez-Díaz
,
J. M.
López-Herrera
,
M. A.
Herrada
,
A. M.
Gañán-Calvo
, and
J. M.
Montanero
, “
The role of charge relaxation in electrified tip streaming
,”
Phys. Fluids
35
(
1
),
017131
(
2023
).
110.
K.
Fallah
and
E.
Fattahi
, “
Splitting of droplet with different sizes inside a symmetric T-junction microchannel using an electric field
,”
Sci. Rep.
12
,
3226
(
2022
).
111.
T.
Kahali
,
S.
Santra
, and
S.
Chakraborty
, “
Electrically modulated cross-stream migration of a compound drop in micro-confined oscillatory flow
,”
Phys. Fluids
34
(
12
),
122015
(
2022
).
112.
N.
Behera
and
S.
Chakraborty
, “
Electrically modulated relaxation dynamics of pre-stretched droplets post switched-off uniaxial extensional flow
,”
Soft Matter
18
(
19
),
3678
3697
(
2022
).
113.
R.
Saghatchi
,
M.
Ozbulut
, and
M.
Yildiz
, “
Dynamics of double emulsion interfaces under the combined effects of electric field and shear flow
,”
Comput. Mech.
68
(
4
),
775
793
(
2021
).
114.
C.
Sorgentone
and
P. M.
Vlahovska
, “
Pairwise interactions of surfactant-covered drops in a uniform electric field
,”
Phys. Rev. Fluids
6
(
5
),
053601
(
2021
).
115.
B. W.
Wagoner
,
P. M.
Vlahovska
,
M. T.
Harris
, and
O. A.
Basaran
, “
Electric-field-induced transitions from spherical to discocyte and lens-shaped drops
,”
J. Fluid Mech.
904
,
R4
(
2020
).
116.
S.
Santra
,
A.
Jana
, and
S.
Chakraborty
, “
Electric field modulated deformation dynamics of a compound drop in the presence of confined shear flow
,”
Phys. Fluids
32
(
12
),
122006
(
2020
).
117.
Z.
Jiang
,
Y.
Gan
, and
Y.
Luo
, “
Effect of viscosity ratio on the dynamic response of droplet deformation under a steady electric field
,”
Phys. Fluids
32
(
5
),
053301
(
2020
).
118.
P.
Soni
,
R. M.
Thaokar
, and
V. A.
Juvekar
, “
Electrohydrodynamics of a concentric compound drop in an AC electric field
,”
Phys. Fluids
30
(
3
),
032102
(
2018
).
119.
X.
Liu
,
G.
Hao
,
B.
Li
, and
Y.
Chen
, “
Experimental study on the electrohydrodynamic deformation of droplets in a combined DC electric field and shear flow field
,”
Fundam. Res.
3
(
2
),
274
287
(
2023
).
120.
N.
Chetwani
,
S.
Maheshwari
, and
H. C.
Chang
, “
Universal cone angle of ac electrosprays due to net charge entrainment
,”
Phys. Rev. Lett.
101
(
20
),
204501
(
2008
).
121.
Z. R.
Gagnon
and
H.-C.
Chang
, “
Dielectrophoresis of ionized gas microbubbles: Dipole reversal due to diffusive double-layer polarization
,”
Appl. Phys. Lett.
93
(
22
),
224101
(
2008
).
122.
N.
Chetwani
,
C. A.
Cassou
,
D. B.
Go
, and
H. C.
Chang
, “
Frequency dependence of alternating current electrospray ionization mass spectrometry
,”
Anal. Chem.
83
(
8
),
3017
3023
(
2011
).
123.
Z.
Gagnon
,
J.
Gordon
,
S.
Sengupta
, and
H. C.
Chang
, “
Bovine red blood cell starvation age discrimination through a glutaraldehyde-amplified dielectrophoretic approach with buffer selection and membrane cross-linking
,”
Electrophoresis
29
(
11
),
2272
2279
(
2008
).
124.
R.
Hadjiaghaie Vafaie
,
A.
Fardi-Ilkhchy
,
S.
Sheykhivand
, and
S.
Danishvar
, “
Theoretical and experimental study of an electrokinetic micromanipulator for biological applications
,”
Biomimetics
10
(
1
),
56
(
2025
).
125.
S.
Yan
,
Z.
Rajestari
,
T. C.
Morse
,
H.
Li
, and
L.
Kulinsky
, “
Electrokinetic manipulation of biological cells towards biotechnology applications
,”
Micromachines
15
(
3
),
341
(
2024
).
126.
G.
Porro
,
T.
Ryser
,
P. E.
Thiriet
,
M. S.
Cristofori
, and
C.
Guiducci
, “
Electrokinetic microdevices for biological sample processing
,”
Nat. Rev. Electr. Eng.
1
(
12
),
768
787
(
2024
).
127.
Z. Y.
Wu
,
B.
Ma
,
S. F.
Xie
,
K.
Liu
, and
F.
Fang
, “
Simultaneous electrokinetic concentration and separation of proteins on a paper-based analytical device
,”
RSC Adv.
7
(
7
),
4011
4016
(
2017
).
128.
M.
Osaid
and
D.
Dasgupta
, “Electrokinetic flow modeling through bone scaffold,” arXiv:2501.04025 (
2024
).
129.
D.
Lee
,
B.
Hwang
, and
B.
Kim
, “
The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter
,”
Micro Nano Syst. Lett.
4
,
1
(
2016
).
130.
J.
Yao
,
K.
Zhao
,
J.
Lou
, and
K.
Zhang
, “
Recent advances in dielectrophoretic manipulation and separation of microparticles and biological cells
,”
Biosensors
14
(
9
),
417
(
2024
).
131.
V.
Abt
,
F.
Gringel
,
A.
Han
,
P.
Neubauer
, and
M.
Birkholz
, “
Separation, characterization, and handling of microalgae by dielectrophoresis
,”
Microorganisms
8
(
4
),
540
(
2020
).
132.
W. J.
Soong
,
C. H.
Wang
,
C.
Chen
, and
G. B.
Lee
, “
Nanoscale sorting of extracellular vesicles via optically-induced dielectrophoresis on an integrated microfluidic system
,”
Lab Chip
24
(
7
),
1965
1976
(
2024
).
133.
Y. F.
Chen
,
F.
Luh
,
Y. S.
Ho
, and
Y.
Yen
, “
Exosomes: A review of biologic function, diagnostic and targeted therapy applications, and clinical trials
,”
J. Biomed. Sci.
31
,
67
(
2024
).
134.
L.
Han
,
Z.
Zhao
,
K.
Yang
,
M.
Xin
,
L.
Zhou
,
S.
Chen
,
S.
Zhou
,
Z.
Tang
,
H.
Ji
, and
R.
Dai
, “
Application of exosomes in the diagnosis and treatment of pancreatic diseases
,”
Stem Cell Res. Ther.
13
,
153
(
2022
).
135.
S.
Kumar
,
S.
Senapati
, and
H. C.
Chang
, “
Extracellular vesicle and lipoprotein diagnostics (ExoLP-Dx) with membrane sensor: A robust microfluidic platform to overcome heterogeneity
,”
Biomicrofluidics
18
(
4
),
041301
(
2024
).
136.
H.
Morgan
and
N. G.
Green
,
AC Electrokinetics: Colloids and Nanoparticles
(
Research Studies Press
,
2003
).
137.
M. Z.
Bazant
and
T. M.
Squires
, “
Induced-charge electrokinetic phenomena: Theory and microfluidic applications
,”
Phys. Rev. Lett.
92
(
6
),
066101
(
2004
).
138.
T.
Schnelle
,
T.
Müller
,
G.
Gradl
,
S. G.
Shirley
, and
G.
Fuhr
, “
Dielectrophoretic manipulation of suspended submicron particles
,”
Electrophoresis
21
(
1
),
66
73
(
2000
).
139.
A.
Ramos
,
H.
Morgan
,
N. G.
Green
, and
A.
Castellanos
, “
Ac electrokinetics: A review of forces in microelectrode structures
,”
J. Phys. D: Appl. Phys.
31
(
18
),
2338
(
1998
).
140.
M. Z.
Bazant
,
M. S.
Kilic
,
B. D.
Storey
, and
A.
Ajdari
, “
Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions
,”
Adv. Colloid Interface Sci.
152
(
1–2
),
48
88
(
2009
).
141.
N. T.
Nguyen
,
S. T.
Wereley
, and
S. A. M.
Shaegh
,
Fundamentals and Applications of Microfluidics
(
Artech House
,
2019
).
142.
S.
Kaziz
,
I.
Ben Romdhane
,
F.
Echouchene
, and
M. H.
Gazzah
, “
Numerical simulation and optimization of AC electrothermal microfluidic biosensor for COVID-19 detection through taguchi method and artificial network
,”
Eur. Phys. J. Plus
138
,
96
(
2023
).
143.
R. R.
Pethig
,
Dielectrophoresis: Theory, Methodology and Biological Applications
(
John Wiley & Sons
,
2017
).
144.
H.
Hadady
,
F.
Karamali
,
F.
Ejeian
,
S.
Haghjooy Javanmard
,
L.
Rafiee
, and
M. H.
Nasr Esfahani
, “
AC electrokinetic isolation and detection of extracellular vesicles from dental pulp stem cells: Theoretical simulation incorporating fluidmechanics
,”
Electrophoresis
42
(
20
),
2018
2026
(
2021
).
145.
J.
Voldman
, “
Electrical forces for microscale cell manipulation
,”
Annu. Rev. Biomed. Eng.
8
,
425
454
(
2006
).
146.
H.
Jiang
,
Y.
Li
,
F.
Du
,
Z.
Nie
,
G.
Wei
,
Y.
Wang
, and
X.
Liu
, “
Numerical simulations of combined dielectrophoresis and alternating current electrothermal flow for high-efficient separation of (bio) microparticles
,”
Micromachines
15
(
3
),
345
(
2024
).
147.
N. N.
Nasir Ahamed
,
C. A.
Mendiola-Escobedo
,
V. H.
Perez-Gonzalez
, and
B. H.
Lapizco-Encinas
, “
Development of a DC-biased AC-stimulated microfluidic device for the electrokinetic separation of bacterial and yeast cells
,”
Biosensors
14
(
5
),
237
(
2024
).
148.
Y.
Tao
,
W.
Liu
,
C.
Song
,
Z.
Ge
,
Z.
Li
,
Y.
Li
, and
Y.
Ren
, “
Numerical investigation of field-effect control on hybrid electrokinetics for continuous and position-tunable nanoparticle concentration in microfluidics
,”
Electrophoresis
43
(
21–22
),
2074
2092
(
2022
).
149.
V. S.
Shelistov
,
N. V.
Nikitin
,
G. S.
Ganchenko
, and
E. A.
Demekhin
, “
Numerical modeling of electrokinetic instability in semipermeable membranes
,”
Dokl. Phys.
56
(
10
),
538
(
2011
).
150.
E.
Neumann
,
M.
Schaefer-Ridder
,
Y.
Wang
, and
P.
Hofschneider
, “
Gene transfer into mouse lyoma cells by electroporation in high electric fields
,”
EMBO J.
1
(
7
),
841
845
(
1982
).
151.
T. S.
Santra
,
P.-C.
Wang
, and
F. G.
Tseng
,
Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies,
editesd by K. Takahata (InTech,
2013
), Vol. Chap. 31, p.
38
.
152.
V. F.
Lvovich
,
E.
Matthews
,
A. T.
Riga
, and
L.
Kaza
, “
AC electrokinetic platform for iontophoretic transdermal drug delivery
,”
J. Controlled Release
145
(
2
),
134
140
(
2010
).
153.
R. F.
Probstein
,
Physicochemical Hydrodynamics: An Introduction
(
John Wiley & Sons
,
2005
).
154.
J.
Wu
, “
Interactions of electrical fields with fluids: Laboratory-on-a-chip applications
,”
IET Nanobiotechnol.
2
(
1
),
14
27
(
2008
).
155.
J. A.
Lanauze
,
L. M.
Walker
, and
A. S.
Khair
, “
Relaxation or breakup of a low-conductivity drop upon removal of a uniform dc electric field
,”
Phys. Rev. Fluids
1
(
3
),
033902
(
2016
).
156.
J.
Zhou
,
Y.
Tao
,
W.
Liu
,
H.
Sun
,
W.
Wu
,
C.
Song
,
R.
Xue
,
T.
Jiang
,
H.
Jiang
, and
Y.
Ren
, “
Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator
,”
Nano Energy
89
,
106451
(
2021
).
157.
A.
Salari
and
M.
Thompson
, “
Recent advances in AC electrokinetic sample enrichment techniques for biosensor development
,”
Sens. Actuators, B
255
,
3601
3615
(
2018
).
158.
I. F.
Cheng
,
V. E.
Froude
,
Y.
Zhu
,
H. C.
Chang
, and
H. C.
Chang
, “
A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis
,”
Lab Chip
9
(
22
),
3193
3201
(
2009
).
159.
H. C.
Chang
,
D. B.
Go
,
Z.
Slouka
,
S.
Senapati
,
M. E. N.
Yongfan
, and
P. A. N.
Zehao
, “AC electrosprayed droplets for digital and emulsion PCR,” U.S. Patent 11,293,057 (University of Notre Dame, 2022).
160.
Z.
Pan
,
C.
Wang
,
M.
Li
, and
H. C.
Chang
, “
Universal scaling of robust thermal hot spot and ionic current enhancement by focused Ohmic heating in a conic nanopore
,”
Phys. Rev. Lett.
117
(
13
),
134301
(
2016
).
161.
H. D.
Xi
,
W.
Guo
,
M.
Leniart
,
Z. Z.
Chong
, and
S. H.
Tan
, “
AC electric field induced droplet deformation in a microfluidic T-junction
,”
Lab Chip
16
(
16
),
2982
2986
(
2016
).
162.
Y.
Huang
,
Y. L.
Wang
, and
T. N.
Wong
, “
AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale
,”
Lab Chip
17
(
17
),
2969
2981
(
2017
).
163.
C.
Narváez-Muñoz
,
A. R.
Hashemi
,
M. R.
Hashemi
,
L. J.
Segura
, and
P. B.
Ryzhakov
, “
Computational electrohydrodynamics in microsystems: A review of challenges and applications
,”
Arch. Comput. Methods Eng.
32
,
535
569
(
2025
).
164.
J.
Zeng
, “
Non-linear electrohydrodynamics in microfluidic devices
,”
Int. J. Mol. Sci.
12
(
3
),
1633
1649
(
2011
).
165.
J.
Cao
,
P.
Cheng
, and
F.
Hong
, “
Applications of electrohydrodynamics and joule heating effects in microfluidic chips: A review
,”
Sci. China Ser. E
52
(
12
),
3477
3490
(
2009
).
166.
A.
Ramos
, “
Electrohydrodynamic pumping in microsystems
,”
J. Phys.: Conf. Ser.
301
(
1
),
012028
(
2011
).
167.
T. G.
Anderson
,
R.
Cimpeanu
,
D. T.
Papageorgiou
, and
P. G.
Petropoulos
, “
Electric field stabilization of viscous liquid layers coating the underside of a surface
,”
Phys. Rev. Fluids
2
(
5
),
054001
(
2017
).
168.
R.
Cimpeanu
,
D. T.
Papageorgiou
, and
P. G.
Petropoulos
, “
On the control and suppression of the Rayleigh-Taylor instability using electric fields
,”
Phys. Fluids
26
(
2
),
022105
(
2014
).
169.
Z.
Pan
,
Y.
Men
,
S.
Senapati
, and
H.-C.
Chang
, “
Immersed AC electrospray (iACE) for monodispersed aqueous droplet generation
,”
Biomicrofluidics
12
(
4
),
044113
(
2018
).
170.
Z.
Pan
and
H. C.
Chang
, “
Far-field sensitivity of droplet generation: Exponential scaling and cutoff
,”
Phys. Rev. Fluids
4
(
10
),
101701
(
2019
).
171.
H.-C.
Chang
, “
Nanobead electrokinetics: The enabling microfluidic platform for rapid multi-target pathogen detection
,”
Chem. Eng.
53
(
10
),
2486
2492
(
2007
).
You do not currently have access to this content.