Despite the widespread application of microfluidic chips in research fields, such as cell biology, molecular biology, chemistry, and life sciences, the process of designing new chips for specific applications remains complex and time-consuming, often relying on experts. To accelerate the development of high-performance and high-throughput microfluidic chips, this paper proposes an automated Deterministic Lateral Displacement (DLD) chip design algorithm based on reinforcement learning. The design algorithm proposed in this paper treats the throughput and sorting efficiency of DLD chips as key optimization objectives, achieving multi-objective optimization. The algorithm integrates existing research results from our team, enabling rapid evaluation and scoring of DLD chip design parameters. Using this comprehensive performance evaluation system and deep Q-network technology, our algorithm can balance optimal separation efficiency and high throughput in the automated design process of DLD chips. Additionally, the quick execution capability of this algorithm effectively guides engineers in developing high-performance and high-throughput chips during the design phase.

1.
A.
Manz
,
N.
Graber
, and
H. Á.
Widmer
, “
Miniaturized total chemical analysis systems: A novel concept for chemical sensing
,”
Sensor. Actuat. B: Chem.
1
,
244
248
(
1990
).
2.
H.
Chen
and
J.-C.
Meiners
, “
Topologic mixing on a microfluidic chip
,”
Appl. Phys. Lett.
84
,
2193
2195
(
2004
).
3.
P.
Pattanayak
,
S. K.
Singh
,
M.
Gulati
,
S.
Vishwas
,
B.
Kapoor
,
D. K.
Chellappan
,
K.
Anand
,
G.
Gupta
,
N. K.
Jha
,
P. K.
Gupta
et al., “
Microfluidic chips: Recent advances, critical strategies in design, applications and future perspectives
,”
Microfluid. Nanofluid.
25
,
1
28
(
2021
).
4.
A. A.
Aljabali
,
M. A.
Obeid
,
V.
Mishra
,
M.
El-Tanani
, and
M. M.
Tambuwala
, “
Customizable microfluidic devices: Progress, constraints, and future advances
,”
Curr. Drug Delivery
21
,
1285
1299
(
2024
).
5.
A.
Ebrahimi
,
K.
Icoz
,
R.
Didarian
,
C.-H.
Shih
,
E. A.
Tarim
,
B.
Nasseri
,
A.
Akpek
,
B.
Cecen
,
A.
Bal-Ozturk
,
K.
Güleç
et al., “
Molecular separation by using active and passive microfluidic chip designs: A comprehensive review
,”
Adv. Mater. Interfaces
11
,
2300492
(
2024
).
6.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous particle separation through deterministic lateral displacement
,”
Science
304
,
987
990
(
2004
).
7.
V.
Calero
,
P.
Garcia-Sanchez
,
C.
Honrado
,
A.
Ramos
, and
H.
Morgan
, “
Ac electrokinetic biased deterministic lateral displacement for tunable particle separation
,”
Lab Chip
19
,
1386
1396
(
2019
).
8.
N.
Tottori
and
T.
Nisisako
, “
Tunable deterministic lateral displacement of particles flowing through thermo-responsive hydrogel micropillar arrays
,”
Sci. Rep.
13
,
4994
(
2023
).
9.
B.
Karacaoğlu
,
A. T.
Koçer
,
B.
İnan
,
İ.
Bütün
,
R.
Mercimek
,
M.
Ghorbani
,
A.
Koşar
, and
D.
Balkanlı
, “
Microfluidic chip-assisted separation process and post-chip microalgae cultivation for carotenoid production
,”
J. Appl. Phycol.
(published online).
10.
M.
Liu
,
A.
Wu
,
J.
Liu
,
Y.
Zhao
,
X.
Dong
,
T.
Sun
,
Q.
Shi
, and
H.
Wang
, “
TPP-based microfluidic chip design and fabrication method for optimized nerve cells directed growth
,”
Cyborg Bionic Syst.
5
,
0095
(
2024
).
11.
Z.
Liu
,
F.
Huang
,
J.
Du
,
W.
Shu
,
H.
Feng
,
X.
Xu
, and
Y.
Chen
, “
Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure
,”
Biomicrofluidics
7
,
011801
(
2013
).
12.
H.
Song
,
Y.
Wang
,
C.
Garson
, and
K.
Pant
, “
Concurrent DNA preconcentration and separation in bipolar electrode-based microfluidic device
,”
Anal. Methods
7
,
1273
1279
(
2015
).
13.
K. M.
Horsman
,
J. M.
Bienvenue
,
K. R.
Blasier
, and
J. P.
Landers
, “
Forensic DNA analysis on microfluidic devices: A review
,”
J. Forensic Sci.
52
,
784
799
(
2007
).
14.
Y. O.
Jang
,
C. E.
Jin
,
E. H.
Choi
,
J. H.
Shin
,
J.
Kweon
,
B.
Koo
,
S.-B.
Lim
,
S. W.
Lee
, and
Y.
Shin
, “
A homobifunctional imidoester-based microfluidic system for simultaneous DNA and protein isolation from solid or liquid biopsy samples
,”
Lab Chip
19
,
2256
2264
(
2019
).
15.
R.
Rodriguez-Trujillo
,
M. A.
Ajine
,
A.
Orzan
,
M. D.
Mar
,
F.
Larsen
,
C. H.
Clausen
, and
W. E.
Svendsen
, “
Label-free protein detection using a microfluidic Coulter-counter device
,”
Sensor. Actuat. B: Chem.
190
,
922
927
(
2014
).
16.
D.
Kim
and
A. E.
Herr
, “
Protein immobilization techniques for microfluidic assays
,”
Biomicrofluidics
7
,
41501
(
2013
).
17.
L.
Xue
,
M.
Liao
, and
J.
Lin
, “
An all-in-one microfluidic slipchip for power-free and rapid biosensing of pathogenic bacteria
,”
Lab Chip
24
,
4039
4049
(
2024
).
18.
A.
Kheirkhah Barzoki
,
R.
Dezhkam
, and
A.
Shamloo
, “
Tunable velocity-based deterministic lateral displacement for efficient separation of particles in various size ranges
,”
Phys. Fluids
35
,
072017
(
2023
).
19.
P.
Pandit
,
L.
Kong
, and
G.
Samuel
, “
Design and fabrication of a polydimethylsiloxane device for evaluating the effect of pillar geometry and configuration in the flow separation using deterministic lateral displacement
,”
RSC Adv.
14
,
1563
1575
(
2024
).
20.
O. G.
Chavez-Pineda
,
R.
Rodriguez-Moncayo
,
A. M.
Gonzalez-Suarez
,
P. E.
Guevara-Pantoja
,
J. L.
Maravillas-Montero
, and
J. L.
Garcia-Cordero
, “
Portable platform for leukocyte extraction from blood using sheath-free microfluidic DLD
,”
Lab Chip
24
,
2575
2589
(
2024
).
21.
J.
Wang
,
P.
Brisk
, and
W. H.
Grover
, “
Random design of microfluidics
,”
Lab Chip
16
,
4212
4219
(
2016
).
22.
L.
Chen
,
W. H.
Grover
,
M.
Sridharan
, and
P.
Brisk
, “
Multi-objective design automation for microfluidic capture chips
,”
IEEE Trans. NanoBiosci.
22
(
3
),
467
479
(
2023
).
23.
J.
Chen
,
R.
Xiang
, and
X.
Huang
, “
An optimized MOPSA algorithm for highly accurate deterministic lateral displacement microfluidic sorting chip design
,”
J. Phys.: Conf. Ser.
2809
,
012039
(
2024
).
24.
H.
Yuan
,
C.
Wan
,
X.
Wang
,
S.
Li
,
H.
Xie
,
C.
Qian
,
W.
Du
,
X.
Feng
,
Y.
Li
,
P.
Chen
et al., “
Programmable gravity self-driven microfluidic chip for point-of-care multiplied immunoassays
,”
Small
20
,
2310206
(
2024
).
25.
E.
Alpaydin
,
Machine Learning
(
MIT Press
,
2021
).
26.
B.
Mahesh
, “
Machine learning algorithms—A review
,”
Int. J. Sci. Res.
9
,
381
386
(
2020
).
27.
W.
Ji
,
T.-Y.
Ho
,
J.
Wang
, and
H.
Yao
, “
Microfluidic design for concentration gradient generation using artificial neural network
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
39
,
2544
2557
(
2019
).
28.
S. H.
Hong
,
H.
Yang
, and
Y.
Wang
, “
Inverse design of microfluidic concentration gradient generator using deep learning and physics-based component model
,”
Microfluid. Nanofluid.
24
,
44
(
2020
).
29.
A.
Lashkaripour
,
C.
Rodriguez
,
N.
Mehdipour
,
R.
Mardian
,
D.
McIntyre
,
L.
Ortiz
,
J.
Campbell
, and
D.
Densmore
, “
Machine learning enables design automation of microfluidic flow-focusing droplet generation
,”
Nat. Commun.
12
,
25
(
2021
).
30.
M. A.
Wiering
and
M.
Van Otterlo
, “
Reinforcement learning
,”
Adapt. Learn. Optimiz.
12
,
729
(
2012
).
31.
T.
Abe
,
S.
Oh-Hara
, and
Y.
Ukita
, “
Integration of reinforcement learning to realize functional variability of microfluidic systems
,”
Biomicrofluidics
16
,
024106
(
2022
).
32.
K.
Fukada
and
M.
Seyama
, “
Microfluidic devices controlled by machine learning with failure experiments
,”
Anal. Chem.
94
,
7060
7065
(
2022
).
33.
M.
Konishi
,
M.
Inubushi
, and
S.
Goto
, “
Fluid mixing optimization with reinforcement learning
,”
Sci. Rep.
12
,
14268
(
2022
).
34.
T.-C.
Liang
,
Y.-C.
Chang
,
Z.
Zhong
,
Y.
Bigdeli
,
T.-Y.
Ho
,
K.
Chakrabarty
, and
R.
Fair
, “
Dynamic adaptation using deep reinforcement learning for digital microfluidic biochips
,”
ACM Trans. Des. Automat. Electron. Syst.
29
,
1
24
(
2024
).
35.
H.
Cai
,
G.
Liu
,
W.
Guo
,
Z.
Li
,
T.-Y.
Ho
, and
X.
Huang
, “Adaptive control-logic routing for fully programmable valve array biochips using deep reinforcement learning,” in 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC) (IEEE, 2024), pp. 564–569.
36.
G.
Xiao
and
X.
Xu
, “
Study on Bezier curve variable step-length algorithm
,”
Phys. Procedia
25
,
1781
1786
(
2012
).
37.
Y.
Zhang
,
J.
Wang
,
J.
Chen
,
G.
Su
,
W.-S.
Zhao
, and
J.
Liu
, “
Machine learning-enhanced predictive modeling for arbitrary deterministic lateral displacement design and test
,”
IEEE Trans. NanoBiosci.
24
(
1
),
46
62
(
2025
).
38.
Y.
Zhang
and
J.
Wang
, “
Machine learning-driven prediction of DLD chip throughput
,”
J. Phys.: Conf. Ser.
2809
,
012014
(
2024
).
39.
J.
Wang
,
V. G.
Rodgers
,
P.
Brisk
, and
W. H.
Grover
, “
MOPSA: A microfluidics-optimized particle simulation algorithm
,”
Biomicrofluidics
11
,
034121
(
2017
).
40.
G.
Schmid-Schonbein
,
Y. Y.
Shih
, and
S.
Chien
, “Morphometry of human leukocytes,”
Blood
56
(
5
),
866
875
(
1980
).
41.
Z.
Zhang
,
E.
Henry
,
G.
Gompper
, and
D. A.
Fedosov
, “
Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes
,”
J. Chem. Phys.
143
,
243145
(
2015
).
42.
Y.
Wang
,
H.
Liu
,
W.
Zheng
,
Y.
Xia
,
Y.
Li
,
P.
Chen
,
K.
Guo
, and
H.
Xie
, “
Multi-objective workflow scheduling with deep-Q-network-based multi-agent reinforcement learning
,”
IEEE Access
7
,
39974
39982
(
2019
).
43.
L. P.
Kaelbling
,
M. L.
Littman
, and
A. W.
Moore
, “
Reinforcement learning: A survey
,”
J. Artif. Intell. Res.
4
,
237
285
(
1996
).
44.
J.
Staddon
, “
The dynamics of behavior: Review of Sutton and Barto: Reinforcement learning: An introduction
,”
J. Exp. Anal. Behav.
113
,
485
(
2020
).
You do not currently have access to this content.