Circulating tumor cells are central to metastasis, a particularly malign spread of cancer beyond its original location. While rare, there is growing evidence that the clusters of circulating tumor cells are significantly more harmful than individual cells. Microfluidic platforms constitute the core of circulating tumor cell cluster research, allowing cluster detection, analysis, and treatment. In this work, we propose a new mathematical model of circulating tumor cell clusters and apply it to simulate the dynamics of the aggregates inside a microfluidic channel with the external flow of a fluid. We leverage our previous model of the interactions of circulating tumor cells with varying clustering affinities and introduce explicit bonds between the cells that makeup a cluster. We show that the bonds have a visible impact on the cluster dynamics and that they enable the reproduction of known cluster flow and deformation patterns. Furthermore, we demonstrate that the dynamics of these aggregates are sensitive to bond properties, as well as initialization and flow conditions. We believe that our modeling framework represents a valuable mesoscopic formulation with an impact beyond circulating tumor cell clusters, as cell aggregates are common in both nature and applications.

1.
E.
Schuster
,
R.
Taftaf
,
C.
Reduzzi
,
M. K.
Albert
,
I.
Romero-Calvo
, and
H.
Liu
, “
Better together: Circulating tumor cell clustering in metastatic cancer
,”
Trends Cancer
7
,
1020
1032
(
2021
).
2.
T.
Yu
,
C.
Wang
,
M.
Xie
,
C.
Zhu
,
Y.
Shu
,
J.
Tang
, and
X.
Guan
, “
Heterogeneity of CTC contributes to the organotropism of breast cancer
,”
Biomed. Pharmacother.
137
,
111314
(
2021
).
3.
S.
Rajput
,
P. K.
Sharma
, and
R.
Malviya
, “
Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies
,”
Med. Drug Discovery
18
,
100158
(
2023
).
4.
A.
Yamamoto
,
A. E.
Doak
, and
K. J.
Cheung
, “
Orchestration of collective migration and metastasis by tumor cell clusters
,”
Annu. Rev. Pathol.
18
,
231
256
(
2023
).
5.
E.
Wrenn
,
Y.
Huang
, and
K.
Cheung
, “
Collective metastasis: Coordinating the multicellular voyage
,”
Clin. Exp. Metastasis
38
,
373
399
(
2021
).
6.
Y.
Jiang
,
X.
Liu
,
J.
Ye
,
Y.
Ma
,
J.
Mao
,
D.
Feng
, and
X.
Wang
, “
Migrasomes, a new mode of intercellular communication
,”
Cell Commun. Signal.
21
,
105
116
(
2023
).
7.
N.
Aceto
,
A.
Bardia
,
D. T.
Miyamoto
,
M. C.
Donaldson
,
B. S.
Wittner
,
J. A.
Spencer
,
M.
Yu
,
A.
Pely
,
A.
Engstrom
,
H.
Zhu
,
B. W.
Brannigan
,
R.
Kapur
,
S.
Stott
,
T.
Shioda
,
S.
Ramaswamy
,
D. T.
Ting
,
C. P.
Lin
,
M.
Toner
,
D. A.
Haber
, and
S.
Maheswaran
, “
Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis
,”
Cell
158
,
1110
1122
(
2014
).
8.
V. E.
Debets
,
L. M. C.
Janssen
, and
C.
Storm
, “
Enhanced persistence and collective migration in cooperatively aligning cell clusters
,”
Biophys. J.
120
,
1483
1497
(
2021
).
9.
D.
Ma
,
R.
Wang
,
S.
Chen
,
T.
Luo
,
Y.-T.
Chow
, and
D.
Sun
, “
Microfluidic platform for probing cancer cells migration property under periodic mechanical confinement
,”
Biomicrofluidics
12
(2),
024118
(
2018
).
10.
N.
Shanehband
and
S. M.
Naghib
, “
Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments
,”
Biochimie
220
,
122
143
(
2024
).
11.
S. M.
Abusamra
,
R.
Barber
,
M.
Sharafeldin
,
C. M.
Edwards
, and
J. J.
Davis
, “
The integrated on-chip isolation and detection of circulating tumour cells
,”
Sens. Diagn.
3
,
562
584
(
2024
).
12.
R.
Du
,
X.
Han
,
L.
Deng
, and
X.
Wang
, “
Epithelial and mesenchymal phenotypes determine the dynamics of circulating breast tumor cells in microfluidic capillaries under chemotherapy-induced stress
,”
Biomicrofluidics
18
(2),
024106
(
2024
).
13.
H.
Amini
,
W.
Lee
, and
D.
Di Carlo
, “
Inertial microfluidic physics
,”
Lab Chip
14
,
2739
2761
(
2014
).
14.
H.
Haddadi
,
H.
Naghsh-Nilchi
, and
D.
Di Carlo
, “
Separation of cancer cells using vortical microfluidic flows
,”
Biomicrofluidics
12
(1),
014112
(
2018
).
15.
D. F.
Puleri
,
P.
Balogh
, and
A.
Randles
, “
Computational models of cancer cell transport through the microcirculation
,”
Biomech. Model. Mechanobiol.
20
,
1209
1230
(
2021
).
16.
H.
Tang
,
J.
Niu
,
H.
Jin
,
S.
Lin
, and
D.
Cui
, “
Geometric structure design of passive label-free microfluidic systems for biological micro-object separation
,”
Microsyst. Nanoeng.
8
,
62
(
2022
).
17.
S. H.
Au
,
J.
Edd
,
A. E.
Stoddard
,
K. H.
Wong
,
F.
Fachin
,
S.
Maheswaran
,
D. A.
Haber
,
S. L.
Stott
,
R.
Kapur
, and
M.
Toner
, “
Microfluidic isolation of circulating tumor cell clusters by size and asymmetry
,”
Sci. Rep.
7
,
2433
(
2017
).
18.
P.
Keshavarz Motamed
and
N.
Maftoon
, “
A systematic approach for developing mechanistic models for realistic simulation of cancer cell motion and deformation
,”
Sci. Rep.
11
,
21545
(
2021
).
19.
P.
Keshavarz Motamed
,
H.
Abouali
,
M.
Poudineh
, and
N.
Maftoon
, “
Experimental measurement and numerical modeling of deformation behavior of breast cancer cells passing through constricted microfluidic channels
,”
Microsyst. Nanoeng.
10
,
7
(
2024
).
20.
M. R.
King
,
K. G.
Phillips
,
A.
Mitrugno
,
T.-R.
Lee
,
A. M.
de Guillebon
,
S.
Chandrasekaran
,
M. J.
McGuire
,
R. T.
Carr
,
S. M.
Baker-Groberg
,
R. A.
Rigg
,
A.
Kolatkar
,
M.
Luttgen
,
K.
Bethel
,
P.
Kuhn
,
P.
Decuzzi
, and
O. J. T.
McCarty
, “
A physical sciences network characterization of circulating tumor cell aggregate transport
,”
Am. J. Physiol. Cell Physiol.
308
,
C792
C802
(
2015
).
21.
K. J.
Anderson
,
A.
de Guillebon
,
A. D.
Hughes
,
W.
Wang
, and
M. R.
King
, “
Effect of circulating tumor cell aggregate configuration on hemodynamic transport and wall contact
,”
Math. Biosci.
294
,
181
194
(
2017
).
22.
Y.
Xin
,
X.
Chen
,
X.
Tang
,
K.
Li
,
M.
Yang
,
W. C.-S.
Tai
,
Y.
Liu
, and
Y.
Tan
, “
Mechanics and actomyosin-dependent survival/chemoresistance of suspended tumor cells in shear flow
,”
Biophys. J.
116
,
1803
1814
(
2019
).
23.
J.
Zhou
,
A.
Kulasinghe
,
A.
Bogseth
,
K.
O’Byrne
,
C.
Punyadeera
, and
I.
Papautsky
, “
Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel
,”
Microsyst. Nanoeng.
5
,
8
(
2019
).
24.
A.
Marrella
,
A.
Fedi
,
G.
Varani
,
I.
Vaccari
,
M.
Fato
,
G.
Firpo
,
P.
Guida
,
N.
Aceto
, and
S.
Scaglione
, “
High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device
,”
PLoS One
16
,
e0245536
(
2021
).
25.
A.
Abdulla
,
T.
Zhang
,
S.
Li
,
W.
Guo
,
A. R.
Warden
,
Y.
Xin
,
N.
Maboyi
,
J.
Lou
,
H.
Xie
, and
X.
Ding
, “
Integrated microfluidic single-cell immunoblotting chip enables high-throughput isolation, enrichment and direct protein analysis of circulating tumor cells
,”
Microsyst. Nanoeng.
8
,
13
(
2022
).
26.
Z.
Kirchner
,
A.
Geohagan
, and
A.
Truszkowska
, “
A vicsek-type model of confined cancer cells with variable clustering affinities
,”
Integr. Biol.
16
,
zyae005
(
2024
).
27.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).
28.
E.
Méhes
and
T.
Vicsek
, “
Segregation mechanisms of tissue cells: From experimental data to models
,”
Complex Adapt. Syst. Model.
1
,
4
(
2013
).
29.
E.
Méhes
and
T.
Vicsek
, “
Collective motion of cells: From experiments to models
,”
Integr. Biol.
6
,
831
854
(
2014
).
30.
C. P.
Beatrici
,
C. A.
Kirch
,
S.
Henkes
,
F.
Graner
, and
L. G.
Brunnet
, “
Discriminating between individual-based models of collective cell motion in a benchmark flow geometry using standardised spatiotemporal patterns
,” arXiv:2210.11524 (2023).
31.
D. O.
Potyondy
and
P. A.
Cundall
, “
A bonded-particle model for rock
,”
Int. J. Rock. Mech. Min. Sci.
41
,
1329
1364
(
2004
).
32.
A. W.
Baggaley
, “
Model flocks in a steady vortical flow
,”
Phys. Rev. E
91
,
053019
(
2015
).
33.
J. O.
Wilkes
,
Fluid Mechanics for Chemical Engineers with Microfluidics and CFD
(
Pearson Education
,
Upper Saddle River, NJ
,
2006
).
34.
K.
Won Seo
,
Y.
Ran Ha
, and
S.
Joon Lee
, “
Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy
,”
Appl. Phys. Lett.
104
,
213702
(
2014
).
35.
W. H.
Grover
,
A. K.
Bryan
,
M.
Diez-Silva
,
S.
Suresh
,
J. M.
Higgins
, and
S. R.
Manalis
, “
Measuring single-cell density
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
10992
10996
(
2011
).
36.
A.
Be’er
and
G.
Ariel
, “
A statistical physics view of swarming bacteria
,”
Mov. Ecol.
7
,
1
17
(
2019
).
37.
A. F.
Sarioglu
,
N.
Aceto
,
N.
Kojic
,
M. C.
Donaldson
,
M.
Zeinali
,
B.
Hamza
,
A.
Engstrom
,
H.
Zhu
,
T. K.
Sundaresan
,
D. T.
Miyamoto
,
X.
Luo
,
A.
Bardia
,
B. S.
Wittner
,
S.
Ramaswamy
,
T.
Shioda
,
D. T.
Ting
,
S. L.
Stott
,
R.
Kapur
,
S.
Maheswaran
,
D. A.
Haber
, and
M.
Toner
, “
A microfluidic device for label-free, physical capture of circulating tumor cell clusters
,”
Nat. Methods
12
,
685
691
(
2015
).
38.
J. M.
Belmonte
,
G. L.
Thomas
,
L. G.
Brunnet
,
R. M. C.
de Almeida
, and
H.
Chaté
, “
Self-propelled particle model for cell-sorting phenomena
,”
Phys. Rev. Lett.
100
,
248702
(
2008
).
39.
J.
Tordoff
,
M.
Krajnc
,
N.
Walczak
,
M.
Lima
,
J.
Beal
,
S.
Shvartsman
, and
R.
Weiss
, “
Incomplete cell sorting creates engineerable structures with long-term stability
,”
Cell Rep. Phys. Sci.
2
,
100305
(
2021
).
40.
B.
Szabó
,
G. J.
Szöllösi
,
B.
Gönci
,
Z.
Jurányi
,
D.
Selmeczi
, and
T.
Vicsek
, “
Phase transition in the collective migration of tissue cells: Experiment and model
,”
Phys. Rev. E
74
,
061908
(
2006
).
You do not currently have access to this content.