In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications. Then, it summarizes several materials used in the microfabrication of high-pressure microfluidics chips, reviewing their properties, processing methods, and bonding methods. In addition, advanced laser processing techniques for the microfabrication of high-pressure microfluidics chips are described. Last, the paper examines the analytical detection methods employed in high-pressure microfluidics systems, encompassing optical and electrochemical detection methods. The review of analytical detection methods shows the different functions and application scenarios of high-pressure microfluidics systems. In summary, this study provides an efficient and advanced microfluidics system, which can be widely used in chemical engineering, food industry, and environmental engineering under high pressure conditions.

1.
Amatore
,
C.
,
Bonhomme
,
F.
,
Bruneel
,
J.-L.
,
Servant
,
L.
, and
Thouin
,
L.
, “
Mapping dynamic concentration profiles with micrometric resolution near an active microscopic surface by confocal resonance Raman microscopy. Application to diffusion near ultramicroelectrodes: First direct evidence for a conproportionation reaction
,”
J. Electroanal. Chem.
484
,
1
17
(
2000
).
2.
Aralekallu
,
S.
,
Boddula
,
R.
, and
Singh
,
V.
, “
Development of glass-based microfluidic devices: A review on its fabrication and biologic applications
,”
Mater. Des.
225
,
111517
(
2023
).
3.
Ari
,
J.
,
Louvet
,
G.
,
Ledemi
,
Y.
,
Célarié
,
F.
,
Morais
,
S.
,
Bureau
,
B.
,
Marre
,
S.
,
Nazabal
,
V.
, and
Messaddeq
,
Y.
, “
Anodic bonding of mid-infrared transparent germanate glasses for high pressure - high temperature microfluidic applications
,”
Sci. Technol. Adv. Mater.
21
,
11
24
(
2020
).
4.
Arun
,
A.
,
Simone
,
G.
,
Salieb-Beugelaar
,
G. B.
,
Kim
,
J. T.
, and
Manz
,
A.
, “
Latest developments in micro total analysis systems
,”
Anal. Chem.
82
,
4830
4847
(
2010
).
5.
Baker
,
C. A.
,
Duong
,
C. T.
,
Grimley
,
A.
, and
Roper
,
M. G.
, “
Recent advances in microfluidic detection systems
,”
Bioanalysis
1
,
967
975
(
2009
).
6.
Benito-Lopez
,
F.
,
Tiggelaar
,
R. M.
,
Salbut
,
K.
,
Huskens
,
J.
,
Egberink
,
R. J. M.
,
Reinhoudt
,
D. N.
,
Gardeniers
,
H. J. G. E.
, and
Verboom
,
W.
, “
Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor
,”
Lab Chip
7
,
1345
1351
(
2007
).
7.
Blanch-Ojea
,
R.
,
Tiggelaar
,
R. M.
,
Pallares
,
J.
,
Grau
,
F. X.
, and
Gardeniers
,
J. G. E.
, “
Flow of CO2–ethanol and of CO2–methanol in a non-adiabatic microfluidic T-junction at high pressures
,”
Microfluid. Nanofluidics
12
,
927
940
(
2012
).
8.
Blom
,
M. T.
,
Chmela
,
E.
,
Gardeniers
,
J. G. E.
,
Berenschot
,
J. W.
,
Elwenspoek
,
M.
,
Tijssen
,
R.
, and
Berg
,
A. v. d.
, “
Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connections
,”
J. Micromech. Microeng.
11
,
382
385
(
2001
).
9.
Bohm
,
S.
,
Phi
,
H. B.
,
Moriyama
,
A.
,
Runge
,
E.
,
Strehle
,
S.
,
König
,
J.
,
Cierpka
,
C.
, and
Dittrich
,
L.
, “
Highly efficient passive Tesla valves for microfluidic applications
,”
Microsyst. Nanoeng.
8
,
97
(
2022
).
10.
Buffi
,
N.
,
Merulla
,
D.
,
Beutier
,
J.
,
Barbaud
,
F.
,
Beggah
,
S.
,
van Lintel
,
H.
,
Renaud
,
P.
, and
Roelof van der Meer
,
J.
, “
Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples
,”
Lab Chip
11
,
2369
(
2011
).
11.
Chakraborty
,
S.
and
Panigrahi
,
P. K.
, “
Stability of nanofluid: A review
,”
Appl. Therm. Eng.
174
,
115259
(
2020
).
12.
Chen
,
L.
,
Chen
,
J.
,
Yu
,
L.
, and
Wu
,
K.
, “
Improved emulsifying capabilities of hydrolysates of soy protein isolate pretreated with high pressure microfluidization
,”
LWT
69
,
1
8
(
2016
).
13.
Choi
,
A.
,
Vatanabe
,
S. L.
,
de Lima
,
C. R.
, and
Silva
,
E. C. N.
, “
Computational and experimental characterization of a low-cost piezoelectric valveless diaphragm pump
,”
J. Intell. Mater. Syst. Struct.
23
,
53
63
(
2012
).
14.
Ciftlik
,
A. T.
and
Gijs
,
M. A. M.
, “
A low-temperature parylene-to-silicon dioxide bonding technique for high-pressure microfluidics
,”
J. Micromech. Microeng.
21
,
035011
(
2011
).
15.
Dal Dosso
,
F.
,
Kokalj
,
T.
,
Belotserkovsky
,
J.
,
Spasic
,
D.
, and
Lammertyn
,
J.
, “
Self-powered infusion microfluidic pump for ex vivo drug delivery
,”
Biomed. Microdevices
20
, 44 (
2018
).
16.
Deleau
,
T.
,
Fechter
,
M. H. H.
,
Letourneau
,
J.-J.
,
Camy
,
S.
,
Aubin
,
J.
,
Braeuer
,
A. S.
, and
Espitalier
,
F.
, “
Determination of mass transfer coefficients in high-pressure two-phase flows in capillaries using Raman spectroscopy
,”
Chem. Eng. Sci.
228
,
115960
(
2020
).
17.
DeMello
,
A. J.
, “
Control and detection of chemical reactions in microfluidic systems
,”
Nature
442
,
394
402
(
2006
).
18.
Docherty
,
F. T.
,
Monaghan
,
P. B.
,
Keir
,
R.
,
Graham
,
D.
,
Smith
,
W. E.
, and
Cooper
,
J. M.
, “
The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip
,”
Chem. Commun.
2004
,
118
119
.
19.
Fedorowski
,
J.
and
LaCourse
,
W. R.
, “
A review of pulsed electrochemical detection following liquid chromatography and capillary electrophoresis
,”
Anal. Chim. Acta
861
,
1
11
(
2015
).
20.
Fernandes
,
A. C.
,
Semenova
,
D.
,
Panjan
,
P.
,
Sesay
,
A. M.
,
Gernaey
,
K. V.
, and
Krühne
,
U.
, “
Multi-function microfluidic platform for sensor integration
,”
New Biotechnol.
47
,
8
17
(
2018
).
21.
Fiorini
,
G. S.
,
Jeffries
,
G. D. M.
,
Lim
,
D. S. W.
,
Kuyper
,
C. L.
, and
Chiu
,
D. T.
, “
Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds
,”
Lab Chip
3
,
158
163
(
2003
).
22.
Fiorini
,
G. S.
,
Lorenz
,
R. M.
,
Kuo
,
J. S.
, and
Chiu
,
D. T.
, “
Rapid prototyping of thermoset polyester microfluidic devices
,”
Anal. Chem.
76
,
4697
4704
(
2004
).
23.
Fiorini
,
G. S.
,
Yim
,
M.
,
Jeffries
,
G. D. M.
,
Schiro
,
P. G.
,
Mutch
,
S. A.
,
Lorenz
,
R. M.
, and
Chiu
,
D. T.
, “
Fabrication improvements for thermoset polyester (TPE) microfluidic devices
,”
Lab Chip
7
,
923
926
(
2007
).
24.
Fritzsche
, W.,
Optical Nano- and Microsystems for Bioanalytics
(Springer-Verlag, Berlin, Heidelberg,
2012
).
25.
Fu
,
J.-L.
,
Fang
,
Q.
,
Zhang
,
T.
,
Jin
,
X.-H.
, and
Fang
,
Z.-L.
, “
Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement
,”
Anal. Chem.
78
,
3827
3834
(
2006
).
26.
Gai
,
H.
,
Li
,
Y.
, and
Yeung
,
E. S.
, “
Optical detection systems on microfluidic chips
,”
Top. Curr. Chem.
304
,
171
201
(
2011
).
27.
Gizzatov
,
A.
,
Pierobon
,
S.
,
AlYousef
,
Z.
,
Jian
,
G.
,
Fan
,
X.
,
Abedini
,
A.
, and
Abdel-Fattah
,
A. I.
, “
High-temperature high-pressure microfluidic system for rapid screening of supercritical CO(2) foaming agents
,”
Sci. Rep.
11
,
3360
(
2021
).
28.
Gothsch
,
T.
,
Finke
,
J. H.
,
Beinert
,
S.
,
Lesche
,
C.
,
Schur
,
J.
,
Büttgenbach
,
S.
,
Müller-Goymann
,
C.
, and
Kwade
,
A.
, “
Effect of microchannel geometry on high-pressure dispersion and emulsification
,”
Chem. Eng. Technol.
34
,
335
343
(
2011
).
29.
Götz
,
S.
and
Karst
,
U.
, “
Wavelength-resolved fluorescence detector for microchip capillary electrophoresis separations
,”
Sens. Actuators B
123
,
622
627
(
2007
).
30.
Gray
,
B. L.
et al, “High-pressure microfluidics,” paper presented at the Microfluidics, BioMEMS, and Medical Microsystems XIII, 2015.
31.
Gupta
,
A.
,
Eral
,
H. B.
,
Hatton
,
T. A.
, and
Doyle
,
P. S.
, “
Nanoemulsions: Formation, properties and applications
,”
Soft. Matter
12
,
2826
2841
(
2016
).
32.
Haiyun
,
M.
,
Zhao
,
Q.
,
Yao
,
C.
,
Zhao
,
Y.
, and
Chen
,
G.
, “
Effect of fluid viscosities on the liquid-liquid slug flow and pressure drop in a rectangular microreactor
,”
Chem. Eng. Sci.
241
,
116697
(
2021
).
33.
Hartman
,
R. L.
,
McMullen
,
J. P.
, and
Jensen
,
K. F.
, “
Deciding whether to go with the flow: Evaluating the merits of flow reactors for synthesis
,”
Angew. Chem. Int. Ed.
50
,
7502
7519
(
2011
).
34.
Hessel
,
V.
,
Löwe
,
H.
, and
Schönfeld
,
F.
, “
Micromixers—A review on passive and active mixing principles
,”
Chem. Eng. Sci.
60
,
2479
2501
(
2005
).
35.
Horiuchi
,
T.
,
Miura
,
T.
,
Iwasaki
,
Y.
,
Seyama
,
M.
,
Inoue
,
S.
,
Takahashi
,
J.-I.
,
Haga
,
T.
, and
Tamechika
,
E.
, “
Passive fluidic chip composed of integrated vertical capillary tubes developed for on-site SPR immunoassay analysis targeting real samples
,”
Sensors
12
,
7095
7108
(
2012
).
36.
Hosokawa
,
K.
,
Omata
,
M.
,
Sato
,
K.
, and
Maeda
,
M.
, “
Power-free sequential injection for microchip immunoassay toward point-of-care testing
,”
Lab Chip
6
,
236
241
(
2006
).
37.
Huang
,
C.-Y.
,
Matsuda
,
Y.
,
Gregory
,
J. W.
,
Nagai
,
H.
, and
Asai
,
K.
, “
The applications of pressure-sensitive paint in microfluidic systems
,”
Microfluidics Nanofluidics
18
,
739
753
(
2015
).
38.
Huang
,
W. E.
,
Griffiths
,
R. I.
,
Thompson
,
I. P.
,
Bailey
,
M. J.
, and
Whiteley
,
A. S.
, “
Raman microscopic analysis of single microbial cells
,”
Anal. Chem.
76
,
4452
4458
(
2004
).
39.
Hung
,
L. H.
,
Lin
,
R.
, and
Lee
,
A. P.
, “
Rapid microfabrication of solvent-resistant biocompatible microfluidic devices
,”
Lab Chip
8
,
983
987
(
2008
).
40.
Ichikawa
,
N.
,
Hosokawa
,
K.
, and
Maeda
,
R.
, “
Interface motion of capillary-driven flow in rectangular microchannel
,”
J. Colloid Interface Sci.
280
,
155
164
(
2004
).
41.
Iliescu
,
C.
,
Chen
,
B.
, and
Miao
,
J.
, “
On the wet etching of Pyrex glass
,”
Sens. Actuators A
143
,
154
161
(
2008
).
42.
Isaacs
,
N. S.
,
Liquid Phase High Pressure Chemistry
(Wiley,
1981
).
43.
Jensen
,
K. F.
, “
Silicon-based microchemical systems: Characteristics and applications-related articles
,”
MRS Bull.
31
,
101
107
(
2006
).
44.
Jiang
,
P.
,
Kang
,
Z.
,
Zhao
,
S.
,
Meng
,
N.
,
Liu
,
M.
, and
Tan
,
B.
, “
Effect of dynamic high-pressure microfluidizer on physicochemical and microstructural properties of whole-grain Oat pulp
,”
Foods
12
,
2747
(
2023
).
45.
Koutny
,
L.
,
Schmalzing
,
D.
,
Taylor
,
T. A.
, and
Fuchs
,
M.
, “
Microchip electrophoretic immunoassay for serum cortisol
,”
Anal. Chem.
68
,
18
22
(
1996
).
46.
Lake
,
J. R.
,
Heyde
,
K. C.
, and
Ruder
,
W. C.
, “
Low-cost feedback-controlled syringe pressure pumps for microfluidics applications
,”
PLoS One
12
,
e0175089
(
2017
).
47.
Lee
,
C. C.
,
Sui
,
G.
,
Elizarov
,
A.
,
Shu
,
C. J.
,
Shin
,
Y.-S.
,
Dooley
,
A. N.
,
Huang
,
J.
,
Daridon
,
A.
,
Wyatt
,
P.
,
Stout
,
D.
,
Kolb
,
H. C.
,
Witte
,
O. N.
,
Satyamurthy
,
N.
,
Heath
,
J. R.
,
Phelps
,
M. E.
,
Quake
,
S. R.
, and
Tseng
,
H.-R.
, “
Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics
,”
Science
310
,
1793
1796
(
2005
).
48.
Li
,
L.-W.
,
Chen
,
X.-Y.
,
Liu
,
L.-C.
,
Yang
,
Y.
,
Wu
,
Y.-J.
,
Chen
,
G.
,
Zhang
,
Z.-F.
, and
Luo
,
P.
, “
Oil-in-water camellia seeds oil nanoemulsions via high pressure microfluidization: Formation and evaluation
,”
LWT
140
,
110815
(
2021
).
49.
Liu
,
X.
,
Zhu
,
Y.
,
Nomani
,
M. W.
,
Wen
,
X.
,
Hsia
,
T.-Y.
, and
Koley
,
G.
, “
A highly sensitive pressure sensor using an Au-patterned polydimethylsiloxane membrane for biosensing applications
,”
J. Micromech. Microeng.
23
,
025022
(
2013
).
50.
Luo
,
Y.
,
Lu
,
M.
, and
Cui
,
T.
, “
A polymer-based bidirectional micropump driven by a PZT bimorph
,”
Microsystem Technologies
17
,
403
409
(
2011
).
51.
Lv
,
L.
,
Zhang
,
P.
,
Xu
,
T.
, and
Qu
,
L.
, “
Ultrasensitive pressure sensor based on an ultralight sparkling graphene block
,”
ACS Appl. Mater. Interfaces
9
,
22885
22892
(
2017
).
52.
Mainz
,
E. R.
,
Gunasekara
,
D. B.
,
Caruso
,
G.
,
Jensen
,
D. T.
,
Hulvey
,
M. K.
,
Fracassi da Silva
,
J. A.
,
Metto
,
E. C.
,
Culbertson
,
A. H.
,
Culbertson
,
C. T.
, and
Lunte
,
S. M.
, “
Monitoring intracellular nitric oxide production using microchip electrophoresis and laser-induced fluorescence detection
,”
Anal. Methods
4
,
414
420
(
2012
).
53.
Marimuthu
,
M.
and
Kim
,
S.
, “
Pumpless steady-flow microfluidic chip for cell culture
,”
Anal. Biochem.
437
,
161
163
(
2013
).
54.
Marre
,
S.
,
Adamo
,
A.
,
Basak
,
S.
,
Aymonier
,
C.
, and
Jensen
,
K. F.
, “
Design and packaging of microreactors for high pressure and high temperature applications
,”
Ind. Eng. Chem. Res.
49
,
11310
11320
(
2010
).
55.
Marre
,
S.
,
Aymonier
,
C.
,
Subra
,
P.
, and
Mignard
,
E.
, “
Dripping to jetting transitions observed from supercritical fluid in liquid microcoflows
,”
Appl. Phys. Lett.
95
,
134105
(
2009
).
56.
Marre
,
S.
,
Park
,
J.
,
Rempel
,
J.
,
Guan
,
J.
,
Bawendi
,
M. G.
, and
Jensen
,
K. F.
, “
Supercritical continuous-microflow synthesis of narrow size distribution quantum dots
,”
Adv. Mater.
20
,
4830
4834
(
2008
).
57.
Martin
,
A.
,
Camy
,
S.
, and
Aubin
,
J.
, “
Hydrodynamics of CO2-ethanol flow in a microchannel under elevated pressure
,”
Chem. Eng. Sci.
178
,
297
311
(
2018
).
58.
Martin
,
A.
,
Teychené
,
S.
,
Camy
,
S.
, and
Aubin
,
J.
, “
Fast and inexpensive method for the fabrication of transparent pressure-resistant microfluidic chips
,”
Microfluid. Nanofluidics
20
,
92
(
2016
).
59.
Martin
,
R. S.
,
Ratzlaff
,
K. L.
,
Huynh
,
B. H.
, and
Lunte
,
S. M.
, “
In-Channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat
,”
Anal. Chem.
74
,
1136
1143
(
2002
).
60.
März
,
A.
,
Rösch
,
P.
,
Henkel
,
T.
,
Malsch
,
D.
, and
Popp
,
J.
, “
Lab-on-a-chip surface-enhanced Raman spectroscopy
,” in
Optical Nano- and Microsystems for Bioanalytics
(Springer-Verlag, Berlin, Heidelberg,
2012
), pp.
229
245
.
61.
Meyvantsson
,
I.
,
Warrick
,
J. W.
,
Hayes
,
S.
,
Skoien
,
A.
, and
Beebe
,
D. J.
, “
Automated cell culture in high density tubeless microfluidic device arrays
,”
Lab Chip
8
,
717
(
2008
).
62.
Mirasoli
,
M.
,
Guardigli
,
M.
,
Michelini
,
E.
, and
Roda
,
A.
, “
Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis
,”
J. Pharm. Biomed. Anal.
87
,
36
52
(
2014
).
63.
Miyato
,
Y.
,
Kobayashi
,
K.
,
Matsushige
,
K.
, and
Yamada
,
H.
, “
Local surface potential measurements of carbon nanotube FETs by Kelvin probe force microscopy
,”
Jpn. J. Appl. Phys.
44
,
1633
(
2005
).
64.
Mogensen
,
K. B.
and
Kutter
,
J. P.
, “
Optical detection in microfluidic systems
,”
Electrophoresis
30
,
92
100
(
2009
).
65.
Mohith
,
S.
,
Karanth
,
P. N.
, and
Kulkarni
,
S. M.
, “
Recent trends in mechanical micropumps and their applications: A review
,”
Mechatronics
60
,
34
55
(
2019
).
66.
Monserrat Lopez
,
D.
,
Rottmann
,
P.
,
Fussenegger
,
M.
, and
Lörtscher
,
E.
, “
Silicon-based 3D microfluidics for parallelization of droplet generation
,”
Micromachines
14
,
1289
(
2023
).
67.
Muller
,
A.
,
Cominos
,
V.
,
Hessel
,
V.
,
Horn
,
B.
,
Schurer
,
J.
,
Ziogas
,
A.
,
Jahnisch
,
K.
,
Hillmann
,
V.
,
Groser
,
V.
, and
Jam
,
K.
, “
Fluidic bus system for chemical process engineering in the laboratory and for small-scale production
,”
Chem. Eng. J.
107
,
205
214
(
2005
).
68.
Murphy
,
E. R.
,
Inoue
,
T.
,
Sahoo
,
H. R.
,
Zaborenko
,
N.
, and
Jensen
,
K. F.
, “
Solder-based chip-to-tube and chip-to-chip packaging for microfluidic devices
,”
Lab Chip
7
,
1309
1314
(
2007
).
69.
Nge
,
P. N.
,
Rogers
,
C. I.
, and
Woolley
,
A. T.
, “
Advances in microfluidic materials, functions, integration, and applications
,”
Chem. Rev.
113
,
2550
2583
(
2013
).
70.
Nimisha
,
S.
and
Burns
,
M. A.
, “
Microfluidic pressure sensing using trapped air compression
,”
Lab Chip
7
,
633
637
(
2007
).
71.
Nishagar
,
R.
,
Molla
,
R. S.
,
Nandishwara
,
K.
,
Johnson
,
E.
, and
Li
,
Y.
, “
Design and fabrication of a novel on-chip pressure sensor for microchannels
,”
Lab Chip
22
, 4306–4316 (
2022
).
72.
Oh
,
K. W.
,
Lee
,
K.
,
Ahn
,
B.
, and
Furlani
,
E. P.
, “
Design of pressure-driven microfluidic networks using electric circuit analogy
,”
Lab Chip
12
,
515
545
(
2012
).
73.
Olanrewaju
,
A.
,
Beaugrand
,
M.
,
Yafia
,
M.
, and
Juncker
,
D.
, “
Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits
,”
Lab Chip
18
,
2323
2347
(
2018
).
74.
Ottesen
,
E. A.
,
Hong
,
J. W.
,
Quake
,
S. R.
, and
Leadbetter
,
J. R.
, “
Microfluidic digital PCR enables multigene analysis of individual environmental bacteria
,”
Science
314
,
1464
1467
(
2006
).
75.
Pasas
,
S. A.
,
Lacher
,
N. A.
,
Davies
,
M. I.
, and
Lunte
,
S. M.
, “
Detection of homocysteine by conventional and microchip capillary electrophoresis/electrochemistry
,”
Electrophoresis
23
,
759
766
(
2002
).
76.
Peles
,
Y.
,
Srikar
,
V. T.
,
Harrison
,
T. S.
,
Protz
,
C.
,
Mracek
,
A.
, and
Spearing
,
S. M.
, “
Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation
,”
J. Microelectromech. Syst.
13
,
31
40
(
2004
).
77.
Pieber
,
B.
and
Kappe
,
C. O.
, “
Direct aerobic oxidation of 2-benzylpyridines in a gas–liquid continuous-flow regime using propylene carbonate as a solvent
,”
Green Chem.
15
,
320
324
(
2013
).
78.
Pu
,
H.
,
Xiao
,
W.
, and
Sun
,
D.-W.
, “
SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants
,”
Trends Food Sci. Technol.
70
,
114
126
(
2017
).
79.
Qi
,
Z.
,
Xu
,
L.
,
Xu
,
Y.
,
Zhong
,
J.
,
Abedini
,
A.
,
Cheng
,
X.
, and
Sinton
,
D.
, “
Disposable silicon-glass microfluidic devices: Precise, robust and cheap
,”
Lab Chip
18
,
3872
3880
(
2018
).
80.
Qian
,
J.-Y.
,
Li
,
X.-J.
,
Wu
,
Z.
,
Jin
,
Z.-J.
, and
Sunden
,
B.
, “
A comprehensive review on liquid–liquid two-phase flow in microchannel: Flow pattern and mass transfer
,”
Microfluidics Nanofluidics
23
,
116
(
2019
).
81.
Qiaoli
,
Z.
,
Yan
,
W.
,
Liu
,
Y.
, and
Li
,
J.
, “
Modulation of the structural and functional properties of perilla protein isolate from oilseed residues by dynamic high-pressure microfluidization
,”
Food Chem.
365
,
130497
(
2021
).
82.
Razzaq
,
T.
and
Kappe
,
C. O.
, “
Continuous flow organic synthesis under high-temperature/pressure conditions
,”
Chem. Asian J.
5
,
1274
1289
(
2010
).
83.
Rosslee
,
C.
and
Abbott
,
N. L.
, “
Active control of interfacial properties
,”
Curr. Opin. Colloid Interface Sci.
5
,
81
87
(
2000
).
84.
Rui
,
X.
,
Kou
,
X.
,
Wu
,
T.-W.
,
Li
,
X.-S.
, and
Wang
,
Y.
, “
Pore-scale experimental investigation of the fluid flow effects on methane hydrate formation
,”
Energy
271
,
126967
(
2023
).
85.
Schulze
,
P.
and
Belder
,
D.
, “
Label-free fluorescence detection in capillary and microchip electrophoresis
,”
Anal. Bioanal. Chem.
393
,
515
525
(
2009
).
86.
Silva
,
A. M. T.
,
Rodrigues
,
R. O.
,
Lima
,
R.
, and
Gomes
,
H. T.
, “
Polymer microfluidic devices: An overview of fabrication methods
,”
U. Porto J. Eng.
1
,
67
79
(
2015
).
87.
Södergren
,
S.
,
Svensson
,
K.
, and
Hjort
,
K.
, “
Microfluidic active pressure and flow stabiliser
,”
Sci. Rep.
11
,
22504
(
2021
).
88.
Sollier
,
E.
,
Murray
,
C.
,
Maoddi
,
P.
, and
Di Carlo
,
D.
, “
Rapid prototyping polymers for microfluidic devices and high pressure injections
,”
Lab Chip
11
,
3752
3765
(
2011
).
89.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Ann. Rev. Fluid Mech.
36
,
381
411
(
2004
).
90.
Suh
,
R. S.
,
Zhu
,
X.
,
Phadke
,
N.
,
Ohl
,
D. A.
,
Takayama
,
S.
, and
Smith
,
G. D.
, “
IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm
,”
Hum. Reprod.
21
,
477
483
(
2006
).
91.
Sun
,
F.
,
Bai
,
S.
, and
Wang
,
Q.
, “
Structures and properties of waste silicone cross-linked polyethylene de-cross-linked selectively by solid-state shear mechanochemical technology
,”
J. Vinyl Addit. Technol.
25
,
149
158
(
2019
).
92.
Tan
,
Y. C.
,
Fisher
,
J. S.
,
Lee
,
A. I.
,
Cristini
,
V.
, and
Lee
,
A. P.
, “
Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting
,”
Lab Chip
4
,
292
298
(
2004
).
93.
Tang
,
T.
,
Yuan
,
Y.
,
Yalikun
,
Y.
,
Hosokawa
,
Y.
,
Li
,
M.
, and
Tanaka
,
Y.
, “
Glass based micro total analysis systems: Materials, fabrication methods, and applications
,”
Sens. Actuators B
339
,
129859
(
2021
).
94.
Tennico
,
Y. H.
,
Koesdjojo
,
M. T.
,
Kondo
,
S.
,
Mandrell
,
D. T.
, and
Remcho
,
V. T.
, “
Surface modification-assisted bonding of polymer-based microfluidic devices
,”
Sens. Actuators B
143
,
799
804
(
2010
).
95.
Tiggelaar
,
R. M.
,
Benito-López
,
F.
,
Hermes
,
D. C.
,
Rathgen
,
H.
,
Egberink
,
R. J. M.
,
Mugele
,
F. G.
,
Reinhoudt
,
D. N.
,
van den Berg
,
A.
,
Verboom
,
W.
, and
Gardeniers
,
H. J. G. E.
, “
Fabrication, mechanical testing and application of high-pressure glass microreactor chips
,”
Chem. Eng. J.
131
,
163
170
(
2007
).
96.
Trachsel
,
F.
,
Hutter
,
C.
, and
Vonrohr
,
P.
, “
Transparent silicon/glass microreactor for high-pressure and high-temperature reactions
,”
Chem. Eng. J.
135
,
S309
S316
(
2008
).
97.
Vandaveer
IV,
W. R.
,
Pasas
,
S. A.
,
Martin
,
R. S.
, and
Lunte
,
S. M.
, “
Recent developments in amperometric detection for microchip capillary electrophoresis
,”
Electrophoresis
23
,
3667
3677
(
2002
).
98.
Vang
,
T. A.
,
Zhang
,
X.
, and
Zhu
,
B.
, “
The development of a new piezoresistive pressure sensor for low pressures
,”
IEEE Trans. Ind. Electron.
65
,
6487
6496
(
2018
).
99.
Wägli
,
P.
,
Homsy
,
A.
, and
de Rooij
,
N. F.
, “
Norland optical adhesive (NOA81) microchannels with adjustable surface properties and high chemical resistance against IR-transparent organic solvents
,”
Proc. Eng.
5
,
460
463
(
2010
).
100.
Wlodarczyk
,
K. L.
,
Carter
,
R.
,
Jahanbakhsh
,
A.
,
Lopes
,
A.
,
Mackenzie
,
M.
,
Maier
,
R.
,
Hand
,
D.
, and
Maroto-Valer
,
M.
, “
Rapid laser manufacturing of microfluidic devices from glass substrates
,”
Micromachines
9
,
409
(
2018
).
101.
Wlodarczyk
,
K. L.
,
Hand
,
D. P.
, and
Maroto-Valer
,
M. M.
, “
Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser
,”
Sci. Rep.
9
,
20215
(
2019
).
102.
Xu
,
J.-J.
,
Wang
,
A.-J.
, and
Chen
,
H.-Y.
, “
Electrochemical detection modes for microchip capillary electrophoresis
,”
Trends Anal. Chem.
26
,
125
132
(
2007
).
103.
Yan
,
J.
,
Hu
,
M.
,
Li
,
D.
,
He
,
Y.
,
Zhao
,
R.
,
Jiang
,
X.
,
Song
,
S.
,
Wang
,
L.
, and
Fan
,
C.
, “
A nano- and micro- integrated protein chip based on quantum dot probes and a microfluidic network
,”
Nano Res.
1
,
490
496
(
2008
).
104.
Yang
,
H.
and
Gijs
,
M. A. M.
, “
Micro-optics for microfluidic analytical applications
,”
Chem. Soc. Rev.
47
,
1391
1458
(
2018
).
105.
Yd
,
S.
and
Maroo
,
S. C.
, “
Origin of surface-driven passive liquid flows
,”
Langmuir
32
,
8593
8597
(
2016
).
106.
Zaborenko
,
N.
,
Bedore
,
M. W.
,
Jamison
,
T. F.
, and
Jensen
,
K. F.
, “
Kinetic and scale-up investigations of epoxide aminolysis in microreactors at high temperatures and pressures
,”
Org. Process Res. Dev.
15
,
131
139
(
2011
).
107.
Zhang
,
X.
,
Wang
,
X.
,
Chen
,
K.
,
Cheng
,
J.
,
Xiang
,
N.
, and
Ni
,
Z.
, “
Passive flow regulator for precise high-throughput flow rate control in microfluidic environments
,”
RSC Adv.
6
,
31639
31646
(
2016
).
108.
Zhang
,
X.
and
Zhang
,
Z.
, “
Microfluidic passive flow regulatory device with an integrated check valve for enhanced flow control
,”
Micromachines
10
,
653
(
2019
).
109.
Zhang
,
Y. T.
,
Bottausci
,
F.
,
Rao
,
M. P.
,
Parker
,
E. R.
,
Mezic
,
I.
, and
MacDonald
,
N. C.
, “
Titanium-based dielectrophoresis devices for microfluidic applications
,”
Biomed. Microdevices
10
,
509
517
(
2008
).
110.
Zhong
,
J.
,
Tu
,
Y.
,
Liu
,
W.
,
Xu
,
Y.
,
Liu
,
C.
, and
Dun
,
R.
, “
Antigenicity and conformational changes of β-lactoglobulin by dynamic high pressure microfluidization combining with glycation treatment
,”
J. Dairy Sci.
97
,
4695
4702
(
2014
).
You do not currently have access to this content.