Accurate detection of pathogenic nucleic acids is crucial for early diagnosis, effective treatment, and containment of infectious diseases. It facilitates the timely identification of pathogens, aids in monitoring disease outbreaks, and helps prevent the spread of infections within healthcare settings and communities. We developed a multi-layered, paper-based microfluidic and miniaturized electrophoresis system for rapid nucleic acid extraction, separation, amplification, and detection, designed for resource-limited settings. Constructed from acrylic, transparency film, pressure-sensitive adhesion, and Whatman paper using a CO2 laser, the setup simplifies traditional methods and eliminates the need for complex equipment. DNA extraction and purification are achieved using Zweifach–Fung bifurcation and Fahraeus effect principles, with detection via a hydrogel-assisted colorimetric isothermal reverse transcriptase-loop-mediated isothermal amplification technique. The system accurately identified the SARS-CoV-2 N-gene and β-actin human gene, validated by a compact electrophoresis setup. In clinical validation with 12 patient specimens, the system demonstrated a positive predictive agreement of 83.0% and a negative predictive agreement of 100%. The system achieves a limit of detection of 1 copy/μl and can potentially transform nucleic acid detection assays in healthcare settings. This study addresses key challenges in nucleic acid detection, such as ensuring sample quality and quantity, reducing reliance on sophisticated equipment, preventing contamination, simplifying procedures, and providing rapid and accurate diagnostics for emerging pathogens.

1.
R.
Paul
,
E.
Ostermann
, and
Q.
Wei
, “
Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases
,”
Biosens. Bioelectron.
169
,
112592
(
2020
).
2.
Y.
Zou
,
M. G.
Mason
,
Y.
Wang
,
E.
Wee
,
C.
Turni
,
P. J.
Blackall
,
M.
Trau
, and
J. R.
Botella
, “
Nucleic acid purification from plants, animals and microbes in under 30 seconds
,”
PLoS Biol.
15
(
11
),
e2003916
(
2017
).
3.
N.
Ali
,
R. de Cássia Pontello
Rampazzo
,
A. Dias Tavares
Costa
, and
M. Aurelio
Krieger
, “
Current nucleic acid extraction methods and their implications to point-of-care diagnostics
,”
Biomed. Res. Int.
2017
,
9306564
(
2017
).
4.
P.
Zhu
,
M.
Qian
,
Q.
Wu
, and
X.
Liu
, “
Challenges faced in large-scale nucleic acid testing during the sudden outbreak of the B.1.617.2 (Delta)
,”
Int. J. Environ. Res. Public Health
19
(
3
),
1573
(
2022
).
5.
Z.
Yin
,
Z.
Ramshani
,
J. J.
Waggoner
,
B. A.
Pinsky
,
S.
Senapati
, and
H.-C.
Chang
, “
A non-optical multiplexed PCR diagnostic platform for serotype-specific detection of dengue virus
,”
Sens. Actuators B
310
,
127854
(
2020
).
6.
K.-H.
Esser
,
W. H.
Marx
, and
T.
Lisowsky
, “
maxXbond: first regeneration system for DNA binding silica matrices
,”
Nat. Methods
3
,
i
ii
(
2006
).
7.
V. V.
Padhye
,
C.
York
, and
A.
Burkiewicz
, “Nucleic acid purification on silica gel and glass mixtures,” U.S. patent 5, 382–387 (1997).
8.
S.
Berensmeier
, “
Magnetic particles for the separation and purification of nucleic acids
,”
Appl. Microbiol. Biotechnol.
73
(
3
),
495
504
(
2006
).
9.
D.
Nargessi
and
C.-Y.
Ou
, “
MagaZorb: A simple tool for rapid isolation of viral nucleic acids
,”
J. Infect. Dis.
201
(
Suppl. 1
),
S37
S41
(
2010
).
10.
S.
Ghatak
,
R. B.
Muthukumaran
, and
S. K.
Nachimuthu
, “
A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis
,”
J. Biomol. Tech.
24
(
4
),
224
231
(
2013
).
11.
W.
Gan
,
Y.
Gu
,
J.
Han
,
C. X.
Li
,
J.
Sun
, and
P.
Liu
, “
Chitosan-modified filter paper for nucleic acid extraction and ‘in situ PCR’ on a thermoplastic microchip
,”
Anal. Chem.
89
(
6
),
3568
3575
(
2017
).
12.
X.
Zhu
,
J.
Zhao
,
A.
Hu
,
J.
Pan
,
G.
Deng
,
C.
Hua
,
C.
Zhu
,
Y.
Liu
,
K.
Yang
, and
L.
Zhu
, “
A novel microfluidic device integrated with chitosan-modified capillaries for rapid ZIKV detection
,”
Micromachines
11
(
2
),
186
(
2020
).
13.
S.
Tripathi
,
Y. V. B.
Kumar
,
A.
Agrawal
,
A.
Prabhakar
, and
S. S.
Joshi
, “
Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects
,”
Sci. Rep.
6
(
1
),
26749
(
2016
).
14.
C.
Liu
,
E.
Geva
,
M.
Mauk
,
X.
Qiu
,
W. R.
Abrams
,
D.
Malamud
,
K.
Curtis
,
S. M.
Owen
, and
H. H.
Bau
, “
An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases
,”
Analyst
136
(
10
),
2069
2076
(
2011
).
15.
S. M.
McFall
,
R. L.
Wagner
,
S. R.
Jangam
,
D. H.
Yamada
,
D.
Hardie
, and
D. M.
Kelso
, “
A simple and rapid DNA extraction method from whole blood for highly sensitive detection and quantitation of HIV-1 proviral DNA by real-time PCR
,”
J. Virol. Methods
214
,
37
42
(
2015
).
16.
Y.
Seok
,
H. A.
Joung
,
J. Y.
Byun
,
H. S.
Jeon
,
S. J.
Shin
,
S.
Kim
,
Y. B.
Shin
,
H. S.
Han
, and
M. G.
Kim
, “
A paper-based device for performing loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA targets
,”
Theranostics
7
(
8
),
2220
2230
(
2017
).
17.
R.
Tang
,
H.
Yang
,
J. R.
Choi
,
Y.
Gong
,
J.
Hu
,
T.
Wen
,
X. J.
Li
,
B.
Xu
,
Q.
Mei
, and
F.
Xu
, “
Paper-based device with on-chip reagent storage for rapid extraction of DNA from biological samples
,”
Microchim. Acta
184
(
7
),
2141
2150
(
2017
).
18.
R.
Paul
,
E.
Ostermann
, and
Q.
Wei
, “
Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases
,”
Biosens. Bioelectron. J.
169
,
112592
(
2020
).
19.
J.
Yin
,
Y.
Suo
,
Z.
Zou
,
J.
Sun
,
S.
Zhang
,
B.
Wang
,
Y.
Xu
,
D.
Darland
,
J. X.
Zhao
, and
Y.
Mu
, “
Integrated microfluidic systems with sample preparation and nucleic acid amplification
,”
Lab Chip
19
(
17
),
2769
2785
(
2019
).
20.
J.
Lim
,
R.
Stavins
,
V.
Kindratenko
,
J.
Baek
,
L.
Wang
,
K.
White
,
J.
Kumar
,
E.
Valera
,
W. P.
King
, and
R.
Bashir
, “
Microfluidic point-of-care device for detection of early strains and B.1.1.7 variant of SARS-CoV-2 virus
,”
Lab Chip
22
(
7
),
1297
1309
(
2022
).
21.
P.
Elomaa
,
T.
Ojalehto
,
D.
Kumar
,
V.
Jokinen
, and
P.
Saavalainen
, “
Manually pressurized droplet digital PCR chip for rapid SARS-CoV-2 diagnostics
,”
Biomicrofluidics
18
(
1
),
014106
(
2024
).
22.
M.
Xiao
,
F.
Tian
,
X.
Liu
,
Q.
Zhou
,
J.
Pan
,
Z.
Luo
, and
M.
Yang
, “
Virus detection : From state-of-the-art laboratories to smartphone-based point-of-care testing
,”
Adv. Sci.
9
(
17
),
2105904
(
2022
).
23.
A.
Ganguli
,
A.
Mostafa
,
J.
Berger
,
J.
Lim
,
E.
Araud
,
J.
Baek
,
S. A.
Stewart De Ramirez
,
A.
Baltaji
,
K.
Roth
,
M.
Aamir
,
S.
Aedma
,
M.
Mady
,
P.
Mahajan
,
S.
Sathe
,
M.
Johnson
,
K.
White
,
J.
Kumar
,
E.
Valera
, and
R.
Bashir
, “
Reverse transcription loop-mediated isothermal amplification assay for ultrasensitive detection of SARS-CoV-2 in saliva and viral transport medium clinical samples
,”
Anal. Chem.
93
(
22
),
7797
7807
(
2021
).
24.
D. P.
Manage
,
Y. C.
Morrissey
,
A. J.
Stickel
,
J.
Lauzon
,
A.
Atrazhev
,
J. P.
Acker
, and
L. M.
Pilarski
, “
On-chip PCR amplification of genomic and viral templates in unprocessed whole blood
,”
Microfluid. Nanofluid.
10
(
3
),
697
702
(
2011
).
25.
A.
Sun
,
P.
Vopařilová
,
X.
Liu
,
B.
Kou
,
T.
Řezníček
,
T.
Lednický
,
S.
Ni
,
J.
Kudr
,
O.
Zítka
,
Z.
Fohlerová
,
P.
Pajer
,
H.
Zhang
, and
P.
Neužil
, “
An integrated microfluidic platform for nucleic acid testing
,”
Microsyst. Nanoeng.
10
(
1
),
66
(
2024
).
26.
A.
Ganguli
,
A.
Mostafa
,
J.
Berger
,
M. Y.
Aydin
,
F.
Sun
,
S. A.
Stewart de Ramirez
,
E.
Valera
,
B. T.
Cunningham
,
W. P.
King
, and
R.
Bashir
, “
Rapid isothermal amplification and portable detection system for SARS-CoV-2
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
37
),
22727
22735
(
2020
).
27.
V.
Morya
,
S.
Walia
,
B. B.
Mandal
,
C.
Ghoroi
, and
D.
Bhatia
, “
Functional DNA based hydrogels: Development, properties and biological applications
,”
ACS Biomater. Sci. Eng.
6
(
11
),
6021
6035
(
2020
).
28.
X.
Huang
,
X.
Lin
,
K.
Urmann
,
L.
Li
,
X.
Xie
,
S.
Jiang
, and
M. R.
Hoffmann
, “
Smartphone-based in-gel loop-mediated isothermal amplification (gLAMP) system enables rapid coliphage MS2 quantification in environmental waters
,”
Environ. Sci. Technol.
52
(
11
),
6399
6407
(
2018
).
29.
J.
Wang
,
G.
Jing
,
W.
Huang
,
L.
Xin
,
J.
Du
,
X.
Cai
,
Y.
Xu
,
X.
Lu
, and
W.
Chen
, “
Rapid in situ hydrogel LAMP for on-site large-scale parallel single-cell HPV detection
,”
Anal. Chem.
94
(
51
),
18083
18091
(
2022
).
30.
Y.
Zhu
,
X.
Wu
,
A.
Gu
,
L.
Dobelle
,
C. A.
Cid
,
J.
Li
, and
M. R.
Hoffmann
, “
Membrane-based in-gel loop-mediated isothermal amplification (mgLAMP) system for SARS-CoV-2 quantification in environmental waters
,”
Environ. Sci. Technol.
56
(
2
),
862
873
(
2022
).
31.
N.
Vasilakis
,
K. I.
Papadimitriou
,
H.
Morgan
, and
T.
Prodromakis
, “
High-performance PCB-based capillary pumps for affordable point-of-care diagnostics
,”
Microfluid. Nanofluid.
21
(
6
),
103
(
2017
).
32.
Y.
Fang
,
Y.
Wang
,
X.
Su
,
H.
Liu
,
H.
Chen
,
Z.
Chen
,
L.
Jin
, and
N.
He
, “
A miniaturized and integrated dual-channel fluorescence module for multiplex real-time PCR in the portable nucleic acid detection system
,”
Front. Bioeng. Biotechnol.
10
(
September
),
996456
(
2022
).
33.
R.
Wang
,
R.
Zhao
,
Y.
Li
,
W.
Kong
,
X.
Guo
,
Y.
Yang
,
F.
Wu
,
W.
Liu
,
H.
Song
, and
R.
Hao
, “
Rapid detection of multiple respiratory viruses based on microfluidic isothermal amplification and a real-time colorimetric method
,”
Lab Chip
18
(
22
),
3507
3515
(
2018
).
34.
D. S.
Mouliou
and
K. I.
Gourgoulianis
, “
False-positive and false-negative COVID-19 cases : Respiratory prevention and management strategies, vaccination, and further perspectives
,”
Expert Rev. Respir. Med.
15
(
8
),
990
1002
(
2021
).
35.
K.
Kaarj
,
P.
Akarapipad
, and
J. Y.
Yoon
, “
Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips
,”
Sci. Rep.
8
(
1
),
12438
(
2018
).
36.
N. A.
Tanner
,
Y.
Zhang
, and
T. C.
Evans
, “
Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes
,”
Biotechniques
58
(
2
),
59
68
(
2015
).
37.
E.
González-González
,
I. M.
Lara-Mayorga
,
I. P.
Rodríguez-Sánchez
,
Y. S.
Zhang
,
S. O.
Martínez-Chapa
,
G. T.
De Santiago
, and
M. M.
Alvarez
, “
Colorimetric loop-mediated isothermal amplification (LAMP) for cost-effective and quantitative detection of SARS-CoV-2: The change in color in LAMP-based assays quantitatively correlates with viral copy number
,”
Anal. Methods
13
(
2
),
169
178
(
2021
).
38.
R.
Alhakeem
,
V.
Arruda
,
K.
Steinberg
,
C.
Code
, and
A. F.
Neves
, “
Using saliva and LAMP for non-invasive detection of communicable pathogens in low medical access regions Reham
,”
ChemRxiv
.
39.
S.
Chumwangwapee
,
A.
Chingsungnoen
, and
S.
Siri
, “
A plasma modified cellulose-chitosan porous membrane allows efficient DNA binding and provides antibacterial properties: A step towards developing a new DNA collecting card
,”
Forensic Sci. Int. Genet.
25
,
19
25
(
2016
).
40.
Q.
Cao
,
M.
Mahalanabis
,
J.
Chang
,
B.
Carey
,
C.
Hsieh
,
A.
Stanley
,
C. A.
Odell
,
P.
Mitchell
,
J.
Feldman
,
N. R.
Pollock
, and
C. M.
Klapperich
, “
Microfluidic chip for molecular amplification of influenza a RNA in human respiratory specimens
,”
PLoS One
7
(
3
),
e33176
(
2012
).
41.
W.
Gan
,
B.
Zhuang
,
P.
Zhang
,
J.
Han
,
C. X.
Li
, and
P.
Liu
, “
A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types
,”
Lab Chip
14
(
19
),
3719
3728
(
2014
).
42.
R.
Tang
,
M.
Li
,
X.
Yan
,
M.
Xie
,
L. N.
Liu
,
Z.
Li
, and
F.
Xu
, “
Comparison of paper-based nucleic acid extraction materials for point-of-care testing applications
,”
Cellulose
29
(
4
),
2479
2495
(
2022
).
43.
J. H.
Barbee
and
G. R.
Cokelet
, “
The Fahraeus effect
,”
Microvasc. Res.
3
(
1
),
6
16
(
1971
).
You do not currently have access to this content.